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Abstract 

The United States Department of Energy’s Carbon Capture Simulation for Industry Impact (CCSI2) program has developed a 

framework for sequential design of experiments (SDoE) that aims to maximize knowledge gained from budget- and schedule-

limited pilot scale testing. SDoE was applied to the planning and execution of campaigns for testing CO2 capture systems at pilot-

scale in order to optimally allocate resources available for the testing. In this methodology, a stochastic process model is developed 

by quantifying the parametric uncertainty in submodels of interest; for a solvent-based CO2 capture system, these may include 

physical properties and equipment performance submodels (e.g., mass transfer, interfacial area). This uncertainty is propagated 

through the full process model, over variable operating conditions, for estimating the resulting uncertainty in key model outputs 

(e.g., percentage of CO2 capture, solvent regeneration energy requirement). In developing a data collection plan, the predicted 

output uncertainty is incorporated into an algorithm that seeks simultaneously to select process operating conditions for which the 

predicted uncertainty is relatively high and to ensure that the entire space of operation is well represented. This test plan is then 

used to guide operation of the pilot plant at varying steady-state conditions, with resulting process data incorporated into the existing 

model using Bayesian inference to refine parameter distributions. The updated stochastic model, with reduced parametric 

uncertainty from data collected, is then used to guide additional data collection, thus the sequential nature of the experimental 

design. 

  

The SDoE process was implemented at the pilot test unit (12 MWe in scale) at Norway’s Technology Centre Mongstad (TCM) in 

a summer 2018 test campaign with aqueous monoethanolamine (MEA). During the test campaign, the varied operating conditions 

included the flowrates of circulated solvent, flue gas, and reboiler steam and the CO2 concentration in the flue gas. The process 

data were used to update probability distributions of mass transfer and interfacial area parameters of a stochastic process model 

developed by the CCSI2 team. Two iterations of the SDoE process were executed, resulting in the uncertainty in model predicted 

CO2 capture percentage decreasing by an average of 58.0 ± 4.7% over the full input space of interest. This work demonstrates the 
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potential of the SDoE process for model refinement through reduction in process model parametric uncertainty, and ultimately risk 

in scale-up, in CO2 capture technology performance.  

 

 
Keywords: post-combustion carbon capture; pilot-scale testing; uncertainty quantification; design of experiments  

1. Introduction 

The United States Department of Energy’s Carbon Capture Simulation for Industry Impact (CCSI2) program is a 

collaboration of national laboratories, universities, and industrial organizations that provides research and development 

support for novel CO2 capture technologies with the objective of reducing risk and accelerating their 

commercialization. These efforts involve continuing advancements in and applications of the open-source toolset1 

developed as part of its predecessor project, the Carbon Capture Simulation Initiative (CCSI).  The CCSI Toolset 

includes a suite of computational tools and models with the overarching goal of accelerating the development, 

deployment, and scale-up of CO2 capture technologies. The toolset includes a rigorous process model, implemented 

in Aspen Plus®, of the aqueous monoethanolamine (MEA) solvent system, which is the industrial standard for solvent-

based CO2 capture. This model includes quantification of parametric uncertainty for solvent physical property models 

such as viscosity, density, and surface tension [1], the thermodynamic framework [2], and packing-specific models 

such as mass transfer, interfacial area, and hydraulics [3]. These submodels combine with a full process model that 

was validated with process data from the 0.5 MWe pilot test unit at the National Carbon Capture Center (NCCC) in 

2014 [4]. In 2017, an additional test campaign for the aqueous MEA system was held at NCCC, incorporating the 

CCSI2 framework for SDoE. In this methodology, the existing process model is leveraged to inform collection of data 

that are subsequently used to refine the model and modify the test plan accordingly [5,6]. Over two iterations of the 

SDoE process, parametric distributions for process submodels were refined through experimental observations of 

absorber CO2 capture percentage, resulting in an average uncertainty reduction of approximately 50% for the model 

prediction of CO2 capture percentage throughout the input space of interest.  

The CCSI aqueous MEA process model was scaled up to 12 MWe for consistency with the pilot test unit at 

Norway’s Technology Centre Mongstad (TCM) and was used in the planning and execution of a test campaign at 

TCM in summer 2018. TCM is one of the world’s largest facilities for testing carbon capture technologies, and 

previous test results with the MEA solvent system have been reported in the open literature [7-12], including variation 

in many process variables and both steady-state and dynamic operation. The pilot plant at TCM notably has two 

sources of flue gas: combined cycle gas turbine (CCGT) based heat and power plant (CHP), with ~3.5 vol% CO2, and 

residual fluidized catalytic cracker (RFCC) unit, with ~13-14 vol% CO2. The TCM plant also contains two stripper 

columns, each designed for process operation with one of the flue gas sources. This work focused on collecting 

additional data for the MEA process at TCM with variation in the flowrates of solvent, flue gas, and reboiler steam, 

the concentration of CO2 in the flue gas, the packing height of the absorber, and the stripper configuration. During the 

first three weeks of the test campaign, which are the primary focus of this paper, the SDoE framework was used to 

guide the collection of process data using the existing MEA process model and multiple test objectives. The data were 

used to update the model by refining the distributions of parameters in the mass transfer and interfacial area submodels, 

ultimately resulting in a reduction of predicted uncertainty in the CO2 capture percentage from 10.5 ± 1.5% to 4.4 ± 

0.4%, or an average reduction of 58.0 ± 4.7%,  over the full input space of interest. In the final two weeks of the 

campaign, data were collected for a modified process configuration in which the packing height of the absorber was 

reduced to 18 meters, and eventually 12 meters, and the stripper configuration was modified so that a fraction (~20%) 

of the rich solvent exiting the absorber bypasses the lean-rich heat exchanger and is heated in the water wash of the 

stripper. This work, along with the previous test campaign at NCCC, demonstrates the potential of the SDoE 

methodology for refining predictions of stochastic process models through strategic data collection. The reduction of 

model uncertainty effectively reduces expected risk in process design and operation, thus improving confidence when 

predicting process performance and conducting economic analyses.  

 
1 Available at https://github.com/CCSI-Toolset/ 
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2. Methodology 

2.1. SDoE Methodology 

 

The SDoE process developed by CCSI2 uses a stochastic model, with parametric uncertainty quantified in the 

submodels, to inform collection of process data in order to maximize the value of data obtained during a test campaign. 

Moreover, it provides a framework for directly reducing uncertainty in model prediction of capture rates based on new 

process knowledge gained from data collection. The SDoE process is represented schematically in Fig. 1. 

As shown in Figure 1, a priori probability distributions of submodel parameters are propagated through a process 

model, denoted as 𝑦(𝒙, 𝜽, 𝜽∗), where 𝒙 is a set of input variables that can be manipulated in plant operation and 𝜽 and 

𝜽∗ are sets of model parameters. These sets differ in that 𝜽 contains parameters for which uncertainty is reduced over 

the course of executing the SDoE methodology whereas 𝜽∗ has parameters with irreducible uncertainty based on the 

type of data collected. For the example of a solvent-based CO2 capture system, 𝜽 includes process specific parameters 

from submodels such as mass transfer or interfacial area that may be informed through collection of plant data (e.g. 

CO2 capture percentage in the absorber column). Conversely, 𝜽∗ includes parameters from physical property 

submodels, for which uncertainty is readily estimated through direct measurements of the corresponding properties 

and cannot reasonably be informed from plant level data. If the process model y is sufficiently complex, it may be 

necessary to replace it with a surrogate model, denoted as 𝑦̂(𝒙, 𝜽, 𝜽∗), developed and validated over the full input 

space. For a given point in the input space, a confidence interval for the model prediction are computed by propagating 

the uncertainty in the full set of parameters (𝜽𝑻 = [𝜽 𝜽∗]) through the surrogate model. The 95% confidence interval, 

estimated by taking a sample of size M over the full parameter space (𝜽𝑻,(𝒋), ∀ 𝑗 = 1, … 𝑀), is given as: 

 𝐶𝐼|𝒙(𝒊) = 𝐹0.975({𝑦̂(𝒙(𝒊), 𝜽𝑻,(𝟏)), . . . , 𝑦̂(𝒙(𝒊), 𝜽𝑻,(𝑴))}) − 𝐹0.025({𝑦̂(𝒙(𝒊), 𝜽𝐓,(1)), . . . , 𝑦̂(𝒙(𝒊), 𝜽𝑻,(𝑴))}) (1) 

where {𝑦̂(𝒙(𝒊), 𝜽𝑻,(𝟏)), . . . , 𝑦̂(𝒙(𝒊), 𝜽𝑻,(𝑴))} is the set of values of an output variable calculated from propagating all of 

the individual 𝜽𝑻,(𝒋) through the surrogate model and 𝐹𝑘 represents the kth percentile of this set. The values of 𝐶𝐼|
𝒙(𝒊) 

for individual 𝒙(𝒊) are considered in the test selection method; the specific optimality criterion used in this work is G-

optimality [13], which minimizes the maximum prediction variance.  This aim targets experimental settings 𝒙(𝒊) for 

which the predicted uncertainty (i.e., 𝐶𝐼|𝒙(𝒊)) is relatively large, so that the collection of data at these settings represents 

high potential for uncertainty reduction. Moreover, the algorithm used in this work for test selection simultaneously 

seeks to ensure that the full input space is well-represented in the test plan, balancing good representation of design 

points throughout the region while making locations with large confidence interval widths more likely to be selected.  

Fig. 1. Schematic representation of SDoE methodology 
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    The test plan is then implemented by running the plant accordingly, resulting in collection of experimental data 

(denoted Z). The data are incorporated into a Bayesian inference framework, using the PSUADE2 software package. 

For model parameters of fixed uncertainty, a sample (𝜽∗,(𝒋); ∀ 𝑗 = 1, … , 𝑁) is drawn from their probability distribution 

𝑃(𝜽∗). For each sample point 𝜽∗,(𝒋), a posterior distribution for the remaining parameters (𝜽) is calculated: 

 

 𝜋𝑗(𝜽|𝑍, 𝜽∗,(𝒋)) ∝ 𝑃(𝜽)𝐿(𝑍|𝜽, 𝜽∗,(𝒋)) (2) 

and given in the form of a set of sample points. Here, 𝐿(𝑍|𝜽, 𝜽∗,(𝒋)) represents the likelihood (some metric used to 

express the distance between simulation predictions and experimental data) of observing a set of experimental data 

(Z) conditioned on the values of the parameters, 𝑃(𝜽) the prior distribution of the parameters for which uncertainty is 

updated, and 𝜋𝑗(𝜽|𝑍, 𝜽∗,(𝒋)) the posterior distribution of 𝜽 conditioned on the observed experimental data and the 

value of 𝜽∗ for sample j. The overall posterior distribution 𝜋(𝜽|𝑍, 𝜽∗,(𝒋)) is obtained through the process of 

marginalization, combining all individual 𝜋𝑗(𝜽|𝑍, 𝜽∗,(𝒋)). The updated stochastic model, with refined estimates of 

parameter uncertainties, is then used to re-calculate 𝐶𝐼|𝒙(𝒊) throughout the input space. For all subsequent iterations of 

SDoE, the prior distribution 𝑃(𝜽) is replaced by the posterior distribution 𝜋𝑗(𝜽|𝑍, 𝜽∗,(𝒋)) from the previous iteration. 

                                 

2.2. Overview of TCM Test Campaign 

 

The TCM test campaign ran for five weeks in summer 2018, in five distinct test phases as outlined in Table 1.  

 
Table 1. Phases of MEA test campaign at TCM 

Phase No. Absorber Packing 

Height (m) 

CO2 in Flue Gas 

(vol%) 

No. of Data Sets Stripper Configuration Description of SDoE 

Criterion 

1 24 8 14 Simple Space-Filling Design 
2 24 8 & 10 10 Simple Selection of points with 

optimal economic 

performance 
3 24 8 & 10 41 Simple Sequential SDoE targeting 

uncertainty reduction 

4 18 10 14 With Bypass Minimization of specific 
reboiler duty (SRD) 

5 12 10 19 With Bypass Minimization of SRD 

 

 

In the first three phases of the campaign, the absorber column was operated with all three packing beds (total height 

of 24 meters). A conventional stripper configuration was used in which the full amount of rich solvent exiting the 

absorber is heated in the lean-rich heat exchanger and sent to the top of the stripper column. Throughout the test 

campaign, flue gas from the CCGT plant (3.5 vol% CO2) was combined with recycle of the captured CO2, increasing 

the flue gas concentration to 8 or 10 vol% CO2 as required by the test plan. Due to the increased CO2 concentration in 

the flue gas, and the corresponding increase in the required solvent circulation rate for capturing CO2, the larger 

stripper intended for use with RFCC flue gas was used during this campaign in lieu of the smaller stripper intended 

for CCGT flue gas. In Phases 4-5, the packing height of the absorber was reduced by changing the number of beds 

and the stripper configuration was modified so that approximately 20% of the rich solvent exiting the absorber column 

bypassed the lean-rich heat exchanger and was instead heated with hot vapor leaving the top of the stripper. This 

portion of the test campaign, also guided with use of the process model, was focused on identifying the optimal solvent 

circulation for minimizing the specific reboiler duty for the process. Other process variables were fixed for this portion 

of the test campaign, including a flue gas flowrate of 50,000 sm3/hr with 10 vol% CO2 and 85% CO2 capture. For the 

purpose of brevity, the details of Phases 4-5 are not included in this paper. 

 
2 Problem Solving Environment for Uncertainty Analysis and Design Exploration (https://computing.llnl.gov/projects/psuade-uncertainty-

quantification) 
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The first three phases differed in the choice of criteria used for developing the test plan. Phase 1 used a space-filling 

design to ensure that the process model predicts key outputs such as CO2 capture and specific reboiler duty with 

reasonable accuracy. Phase 2 focused on collecting data in regions where the model predicts optimal economic 

performance. Phase 3 focused on collecting data to target regions where the model predicts high uncertainty based on 

the SDoE procedure in Section 2.1. For all three phases, a desired region of process operation was established based 

on ranges of operation for flue gas flowrate (𝐺), CO2 capture percentage (𝐶𝐴𝑃), CO2 loading in the lean solvent 

entering the absorber column (𝛼𝑙𝑒𝑎𝑛), and the volume fraction of CO2 in the flue gas (𝑦𝐶𝑂2
), with ranges: 

 𝐺 ∈ [36,000 − 75,000] 𝑘𝑔/ℎ𝑟 (3a) 

 𝐶𝐴𝑃 ∈ [80 − 95] % (3b) 

 𝛼𝑙𝑒𝑎𝑛 ∈ [0.10 − 0.25] 𝑚𝑜𝑙 𝐶𝑂2/𝑚𝑜𝑙 𝑀𝐸𝐴 (3c) 

 𝑦𝐶𝑂2
∈ {0.08,0.10} (3d) 

 

The first three variables are treated as continuous whereas the CO2 fraction in the flue gas is treated as a categorical 

variable with two process operation levels. For each value of CO2 fraction, a test set consisting of candidate 

experiments with a unique combination of variables {𝐺, 𝐶𝐴𝑃, 𝛼𝑙𝑒𝑎𝑛} is generated by sampling independently from 

uniform distributions for each variable with upper and lower limits based on the ranges given in Eq. 3. An Aspen Plus 

simulation is run for each point in the candidate set to estimate the corresponding values of lean (𝐿𝑙𝑒𝑎𝑛) and rich (𝐿𝑟𝑖𝑐ℎ) 

solvent flowrate, steam flowrate (𝑆) and mass of CO2 captured (𝑚̇𝐶𝐴𝑃). To be included in the final candidate set, a 

point must satisfy the following conditions based on operational limits for the TCM plant: 

 𝑚̇𝐶𝐴𝑃 < 8,000 𝑘𝑔/ℎ𝑟 (4a) 

 𝑆 < 14,000 𝑘𝑔/ℎ𝑟 (4b) 

 

Separate candidate sets (for 𝑦𝐶𝑂2
= 0.08 and 𝑦𝐶𝑂2

= 0.10) were developed using a space-filling approach based on 

the input vector 𝒙 = [𝐺 𝑆 𝛼𝑙𝑒𝑎𝑛]. These candidate sets were used in Phases 1 and 3, although Phase 1 used a space-

filling design on the model input space while Phase 3 incorporated the predicted uncertainty in the model output, using 

the methodology described in Section 2.1. Moreover, only the candidate set for 8 vol% CO2 in flue gas was 

implemented during Phase 1 of the test campaign due to time considerations. 

 

 Phase 2, however, was designed based on an optimization problem of the form: 

 

min
𝒙

𝑓(𝒙) =
𝐶𝐴𝑃𝐸𝑋 (

𝐴
𝑃

, 𝑖, 𝑛) + 𝑂𝑃𝐸𝑋

𝑚̇𝐶𝐴𝑃

 

 

 

(5a) 

 
(

𝐴

𝑃
, 𝑖, 𝑛) =

𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 

 

 

(5b) 

 
𝒙 = [

𝐿𝑙𝑒𝑎𝑛

𝐺
𝛼𝑙𝑒𝑎𝑛

] 

 

 

(5c) 

 subject to:  

 𝒙𝑳 ≤ 𝒙 ≤ 𝒙𝑼 

 

(5d) 

 ℎ(𝒙) = 0 (5e) 

 𝑔(𝒙) ≤ 0 (5f) 

The objective function is the ratio of the equivalent annual operating cost (EAOC) associated with the CO2 capture to 

the mass of CO2 captured. The EAOC is the sum of the capital cost (CAPEX) multiplied by an annuity factor (
𝐴

𝑃
, 𝑖, 𝑛) 

and the operating cost (OPEX). Within the annuity factor, 
𝐴

𝑃
 is the ratio of annuity to present value, i is the interest 

rate, and n is the number of years. The vector of decision variables is denoted as 𝒙 with lower and upper bounds 𝒙𝑳 

and 𝒙𝑼. The equality constraints denoted by ℎ(𝒙) includes heat and material balances, and the inequality constraints 
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denoted by 𝑔(𝒙) includes the constraints for process operation listed in Eq. 4. The optimization was performed 

separately for the cases with 8 and 10 vol% CO2 in flue gas. In addition the optimal points in the test plan, additional 

test points near the optimal points were included. The space surrounding the optimal point can be represented by a 

cube created by perturbing the input variable values by a chosen amount (10% for this study) from their estimated 

optimal values. A design that permutes each factor away from this estimated optimum one at a time would require 

seven test points, or six for the center of each face of the cube (if each factor is manipulated one at a time) and one for 

the center (optimal) point. As shown in Fig. 2., the design size was reduced to five by considering a fractional factorial 

structure, which also allows exploration of potential interactions between input factors around the optimum [14].  

 
Fig. 2. Space-filling in region around optimal point for Phase 2 test plan 

Since two levels of 𝑦𝐶𝑂2
 were included in the analysis, the reduction of the overall number of points required for the 

Phase 2 test plan from 14 to 10 was highly beneficial due to the limited amount of time available for the test campaign. 

 

3. Results 

3.1 Phase 1 

In Phase 1, the test plan was developed using a minimax space-filling methodology [15] to provide an initial data set 

that was well-representative of the process. For all testing in this phase, the CO2 concentration in the flue gas was 

fixed at 8 vol%. The set of input variables included in the test matrix differs from that used for space-filling design in 

that the input variables for the space-filling design were chosen for modeling convenience whereas the input variables 

in the test matrix were those directly manipulated in the plant operation. In developing the test matrix, the Aspen 

simulation was used to estimate the rich solvent flowrate and the flue gas flowrate was converted from mass to 

volumetric units. The test matrix, which was organized in terms of increasing flue gas flowrate for ease of process 

operation, for Phase 1 is given in Table 2.  

 
Table 2. Test matrix for Phase 1 design of MEA test campaign at TCM 

Test Rich Solvent Flowrate 
(kg/hr) 

Flue Gas Flowrate 
(Sm3/hr) 

Steam Flowrate  
(kg/hr) 

CO2 Capture Percent 
Estimate 

1A 55,300 31,800 5,500 86.1 

1B 54,200 36,000 7,200 88.0 
1C 92,100 37,300 7,400 92.5 

1D 81,400 43,800 7,700 84.9 

1E 81,300 45,900 8,900 93.4 
1F 120,800 53,700 10,700 92.2 

1G 88,900 56,500 12,100 90.4 

1H 90,300 57,100 9,800 82.7 

 

When obtaining data for test cases 1A-1B, it was noted that the CO2 capture percentage was substantially lower than 

the model predictions. This discrepancy was attributed to solvent maldistribution, or uneven flow through the 

packing, in the RFCC stripper column, resulting in inefficient performance of the column. This stripper was 

designed to operate at a solvent flowrate of approximately 200,000 kg/hr, or almost four times higher than the 

solvent flowrate in cases 1A-1B. Therefore, the lean solvent loading for these test runs was substantially higher than 
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that predicted by the model, and the CO2 capture percentage lower. This issue was addressed by dividing each 

subsequent test run into two intervals with distinct operating goals, so that two data sets were collected for test runs 

1C-1H. First, the test was executed with the value of steam flowrate specified in the original test matrix. Upon 

achieving the steady-state, the steam flowrate was manipulated to match the estimated value of CO2 capture. Parity 

plots for the model prediction of CO2 capture percentage in the absorber and steam requirement in the stripper are 

given in Figure 3.  

 
Figure 3. Parity plots for (A) CO2 capture percentage and (B) steam flowrate required for test runs performed in Phase 1. Dashed lines represent 

±10% error. 

The original deterministic model, or the model in which all parameters are fixed as point values, predicts the CO2 

capture with a range of ±10% error for all test runs. The average error for CO2 capture percentage is -2.51 ± 2.29%, 

with the negative error indicating that the model generally underpredicts the data. The model predicts stripper steam 

requirement with an average error of -10.83 ± 10.82%, although the error is notably higher for cases in which the 

solvent flowrate is below 90,000 kg/hr (average error of -16.43 ± 8.49%) than when it is higher than 90,000 kg/hr 

(average error of -3.67 ± 9.29%). This discrepancy is likely due to liquid maldistribution in the stripper column, as 

discussed previously. The results obtained in the first phase of the test campaign demonstrated that the initial process 

model was sufficiently accurate to proceed with the sequential experimental design in subsequent stages.   

 

3.3 Phases 2-3 

During the test campaign, data for Phases 2-3 were collected simultaneously and used to update the model parameter 

distributions through Bayesian inference. The majority of the data for Phase 2 were actually collected after those for 

Phase 3 due to scheduling convenience. The optimization problem described in Eq. 5 was implemented separately for 

the 8 and 10 vol% CO2 cases, and used to develop the test matrix given in Table 3.  

 
Table 3. Test matrix for Phase 2 design of MEA test campaign at TCM 

Test Rich Solvent Flowrate 

(kg/hr) 

Flue Gas Flowrate 

(Sm3/hr) 

Steam Flowrate  

(kg/hr) 

CO2 in Flue Gas (vol%) 

2A 107,800 40,800 10,700 10 

2B 107,100 44,100 10,300 8 

2C 107,100 44,100 12,500 8 
2D 97,400 49,000 11,400 8 

2E 87,700 53,900 10,300 8 

2F 87,700 53,900 12,500 8 
2G 97,000 44,900 11,800 10 

2H 97,000 44,900 9,600 10 

2I 118,600 36,700 9,600 10 

 

In Table 3, the optimal points determined from solving separate optimization problems (Eq. 5) for the 𝑦𝐶𝑂2
= 0.08 

(2A) and 𝑦𝐶𝑂2
= 0.10 (2D) cases are highlighted, and additional test points were selected by perturbing the variables 
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by ± 10% from the optimal values. Parity plots for the model prediction of CO2 capture percentage in the absorber 

and steam requirement in the stripper are given in Fig. 4. 

 

Fig. 4. Parity plots for (A) CO2 capture percentage and (B) steam flowrate required for test runs performed in Phase 2. Dashed lines represent 

±10% error. 

As shown in Figure 4, the accuracy of the model for the data collected in Phase 2 is comparable to that in Phase 1. 

The average percent error for the CO2 capture prediction and steam requirement prediction is -2.40 ± 3.27% and -5.28 

± 8.00%, respectively. The percentage error for the steam requirement prediction is substantially lower for the data 

collected in Phase 2 than in Phase 1 due to the absence of test runs with very low (< 85,000 kg/hr) solvent flowrate. 

Therefore, the model was shown to be sufficiently accurate for the region of the input space likely to be economically 

optimal. 

Phase 3 of the test campaign was focused on data collection in regions where the stochastic model predicts relatively 

high uncertainty for the absorber CO2 capture percentage. These data, along with those collected in Phase 2, were 

used to update the mass transfer and interfacial area model parameter distributions. The test matrix for Phase 3 is 

shown in Table 4.  

 
Table 4. Test matrix for Phase 3 design of MEA test campaign at TCM (First Iteration) 

Test Rich Solvent 
Flowrate (kg/hr) 

Flue Gas Flowrate 
(Sm3/hr) 

Steam Flowrate 
(kg/hr) 

CO2 in Flue Gas 
(vol%) 

CO2 Capture Percent 
Estimate 

3A 133,900 62,600 11,600 8 85.9 

3B 115,400 62,300 10,700 8 81.3 

3C 111,900 59,100 11,100 8 89.3 
3D 120,200 56,100 10,100 8 84.1 

3E 119,500 55,000 9,900 8 83.6 

3F 81,500 51,100 10,300 8 90.1 
3G 57,500 42,500 8,700 8 81.8 

3H 39,300 30,800 6,600 8 80.0 

3I 48,300 30,400 8,200 10 80.0 
3J 85,600 33,800 7,500 10 85.5 

3K 103,100 43,000 9,200 10 82.2 

 

The data collected in Table 4, along with case 2A from Table 3 were used in the Bayesian inference procedure based 

on Eq. 2. In this work, the parameters contained in 𝜽 included the leading coefficients for the interfacial area and mass 

transfer submodels developed in previous work [3], and the parameters contained in 𝜽∗ included the thermodynamic 

model parameters for which distributions were estimated in previous work [2]. Upon obtaining the updated parameter 

distributions, the refined stochastic model was used to develop a new test matrix, shown in Table 5. 
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Table 5. Test matrix for Phase 3 design of MEA test campaign at TCM (Second Iteration) 

Test Rich Solvent 
Flowrate (kg/hr) 

Flue Gas Flowrate 
(Sm3/hr) 

Steam Flowrate 
(kg/hr) 

CO2 in Flue Gas 
(vol%) 

CO2 Capture Percent 
Estimate 

3L 96,100 41,300 9,900 10 89.4 

3M 94,000 43,500 11,000 10 88.8 
3N 119,500 46,500 10,900 10 86.4 

3O 150,300 48,200 11,500 10 85.2 

3P 130,200 58,400 10,500 8 81.9 
3Q 99,900 53,400 10,500 8 90.8 

3R 80,800 51,600 12,900 8 88.3 

3S 127,500 50,800 10,000 8 88.7 
3T 121,200 49,300 9,200 8 85.2 

3U 98,200 47,800 8,400 8 81.6 

3V 125,500 47,000 9,900 8 94.2 

 

The data collected from the test plan given in Table 5, along with cases 2B-2I in Table 3, were used in a second 

iteration of the SDoE procedure to update the parameter distributions again. Parity plots for the model prediction of 

CO2 capture percentage in the absorber and steam requirement in the stripper for all data collected in both iterations 

of Phase 3 are given in Figure 5. 

 

 

Figure 5. Parity plots for (A) CO2 capture percentage and (B) steam flowrate required for test runs performed in Phase 3. Dashed lines represent 

±10% error. 

The average percentage error values for the model predictions of the data collected in Phase 3 are -2.91 ± 5.27% for 

CO2 capture percentage and -8.53 ± 17.20% for the steam flowrate. As with the data collected in Phase 1, there is 

greater discrepancy in the stripper model for cases in which solvent flowrate is low; the average percentage error in 

the steam requirement is -31.05 ± 17.81% for cases in which the solvent flowrate is below 90,000 kg/hr and -0.27 ± 

6.04% when it exceeds 90,000 kg/hr. As previously suggested, the underprediction in steam flowrate is likely due to 

operation inefficiency of the RFCC stripper caused by solvent maldistribution, as the process is operated at much 

lower solvent flowrate than the stripper design condition. 

The probability density functions of the mass transfer and interfacial area parameters, including the prior and 

posterior distributions obtained after each SDoE iteration, are given in Fig. 6. 
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Figure 6. Comparison of prior and posterior distributions of interfacial area and mass transfer model parameters 

Uniform prior distributions were initially chosen for the two parameters. The parameter space of plausible values was 

significantly reduced after incorporating the experimental data from the first iteration of SDoE into the stochastic 

model through Bayesian inference, with less reduction in the second round of SDoE. The effect of SDoE on model 

uncertainty reduction is more apparent when considering the model output, namely the CO2 capture percent in the 

absorber. The effect of the first iteration of SDoE on reducing model prediction of uncertainty in CO2 capture 

percentage is shown in Fig. 7. 

 

Figure 7. Effect of first round of Bayesian inference on CO2 capture prediction confidence interval for individual points in candidate set  

For the stochastic model prediction using the uniform prior distributions, the average confidence interval width for 

the CO2 capture percentage was approximately 10.5% (denoted in Figure 7 by solid line) with standard deviation 1.5% 

(denoted by dashed lines). For the stochastic model prediction with the posterior distribution obtained after the first 

iteration of SDoE, the average confidence interval width was approximately 4.4% with standard deviation 0.4%. No 

further significant reduction in the predicted uncertainty in CO2 capture percentage was demonstrated in the second 

round of SDoE. In Figure 7, the candidate set number refers to an index representing a unique combination of input 

variables (liquid and gas flowrates, CO2 loading, and CO2 fraction in flue gas). The percentage of reduction in 

uncertainty for a given point (𝒙(𝒊)) in the candidate set is calculated as: 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 100% ×

[𝐶𝐼|𝒙(𝒊)]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − [𝐶𝐼|𝒙(𝒊)]𝑓𝑖𝑛𝑎𝑙

[𝐶𝐼|𝒙(𝒊)]𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 
(6) 
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where [𝐶𝐼|𝒙(𝒊)]𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and [𝐶𝐼|𝒙(𝒊)]𝑓𝑖𝑛𝑎𝑙  represent the 95% confidence intervals in the model prediction of CO2 capture 

percentage before and after updating the parameter distributions through Bayesian inference, respectively. For the 

entire candidate set, the average percent reduction in the uncertainty is 58.0 ± 4.7%, which is comparable to the 

reduction in the previous SDoE-based test campaign executed at NCCC [5,6]. As the ability of the SDoE methodology 

to reduce parametric uncertainty in a process model for an aqueous MEA system has been demonstrated in multiple 

campaigns, it may be considered a promising technique for designing future test campaigns to effectively increase 

fundamental understanding of novel CO2 capture systems. 

 

4. Conclusions and Future Work 

In summary, a sequential design of experiments methodology was implemented for executing a test campaign for 

aqueous MEA at TCM, guiding collection of process data to refine the parameter distributions in the stochastic process 

model. This resulted in an average reduction of around 58% in the uncertainty in the prediction of CO2 capture 

percentage. The deterministic model, or the model without parameter uncertainty, also predicted the plant performance 

accurately, with an average error in percentage of CO2 capture of -2.74 ± 4.47% for the first three phases and an 

average error of -8.52 ± 14.85% for the reboiler steam requirement. An exception to the accurate performance of the 

model is for data collected under impractical operating conditions (low solvent circulation rate, in which solvent 

maldistribution in the stripper column was noted). For data collected when the system was operated with rich solvent 

flowrate below 90,000 kg/hr, the percent error in the reboiler steam prediction was -23.92 ± 15.70%. However, the 

percentage error in the steam prediction is -1.17 ± 6.65% for data collected when the rich solvent flowrate was above 

90,000 kg/hr. The insights gained during the execution of SDoE guided the development of a new SDoE module with 

capability for straightforward implementation of the aims used in this experiment [16] that has been implemented in 

the Framework for Optimization, Quantification of Uncertainty, and Surrogates (FOQUS). This is available as part of 

the aforementioned CCSI Toolset and will enable the SDoE process to be implemented in a more streamlined manner 

in future applications. In planned future work, the CCSI2 team will apply the SDoE methodology to novel CO2 capture 

technologies with the primary goal of refining initial process models by reducing their uncertainty, and thus the 

inherent risk associated with preliminary models of new processes, through guided data collection. 
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