

Presentations 9 February – Technical session – Transport&Value chain

- Ben Alcock, SINTEF
- Julian Straus, SINTEF
- Frank Wettland, Altera Infrastructure
- Bente Helen Leinum, DNV

SENIOR RESEARCHER

CO_2 EPOC: The effect of CO_2 on polymer materials used in the CO_2 transport network

Ben Alcock is a Senior Researcher at SINTEF Industry, based in the group Polymer and Composite Materials. Ben received his PhD in 2004 from Queen Mary, University of London, UK, in the area of thermoplastic composite materials. He has worked in R&D in both academia in UK and Netherlands, and in industry in UK and Switzerland.

#CLIMITSUMMIT2023 7–9 February

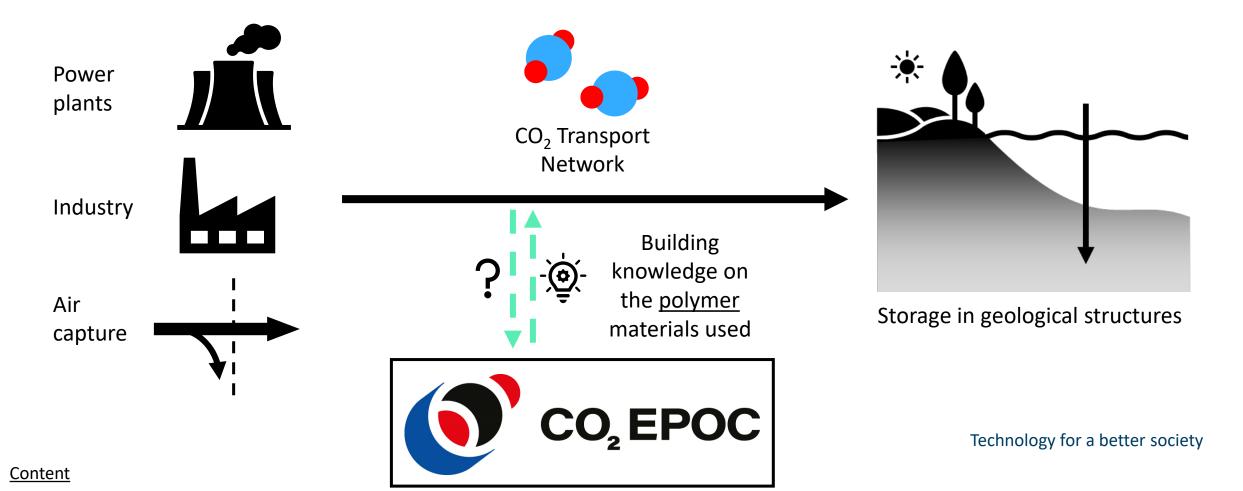
<u>Content</u>

CO₂ EPOC: The effect of CO₂ on polymer materials used in the CO₂ transport network

Ben Alcock SINTEF Industry

Content

Funded by The Research Council of Norway


CLIMIT

Technology for a better society



Carbon capture and storage is an essential part of the strategy to reduce global emissions

How can we transport CO₂ INTEF from capture to storage?

- Transport is usually more economical when density is higher
- State of CO₂ depends on temperature and pressure
- Any leakage during transport undermines the efforts of CO₂ capture

SINTEF

Examples of uses of polymers in gas/liquid transport?

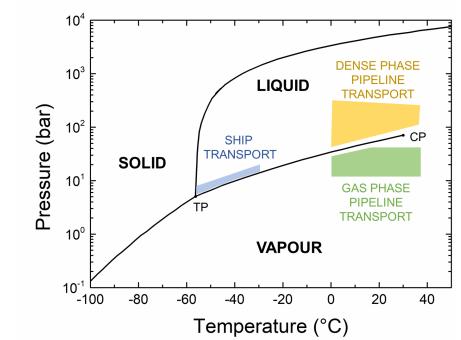
Elastomers

- O-rings, Seals
- Gaskets

Thermoplastics

- Thermoplastic liners for metallic pipes, storage vessels
- Pump coatings
- Valve seat components

Hard Thermosets

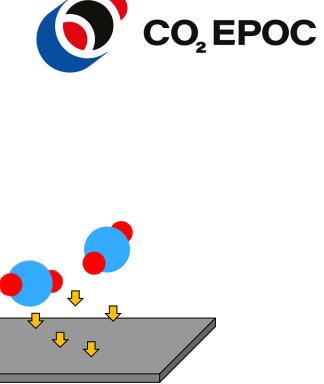

- Epoxy liners for metallic pipes
- Matrices for fibre reinforced composites (e.g. pipes, pressure vessels)

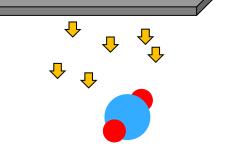
For CO₂ transport: Advantageous to use polymer materials which are already used in oil and gas transport

Enables reuse of existing infrastructure

Example: elastomers used in seals CO, EPOC INTEF in the CO₂ transport

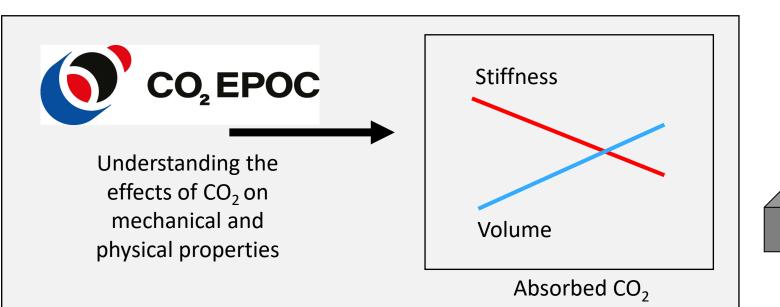


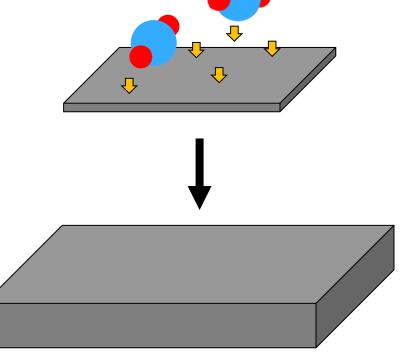

- A simple o-ring, used as a primary barrier to leakage loss of CO₂
- A small but essential component to prevent leakage
- May be exposed to static and cyclic pressurizations



Examples of how CO₂ can affect an elastomer

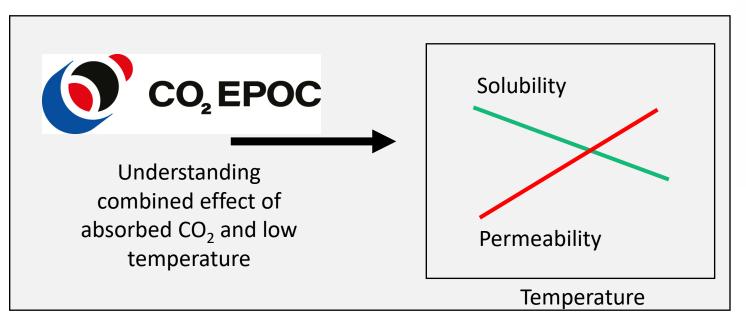
- CO₂ will diffuse through polymers
 - Elastomers are not perfect barriers
 - Barrier properties are temperature and pressure dependent

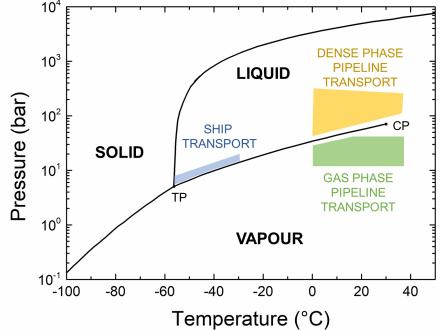




Examples of how CO₂ can affect an elastomer

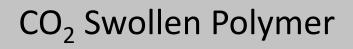
- CO₂ is soluble in many polymers: elastomers can swell
 - Volumetric expansion
 - Reduction in stiffness

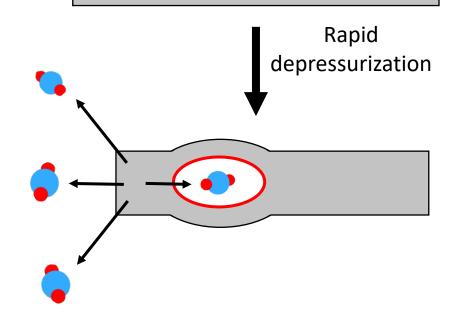



Technology for a better society

- Ship transport of CO₂ involves low temperatures
 - Temperatures in some ship transport scenarios are too low for elastomers typically used in oil and gas transport

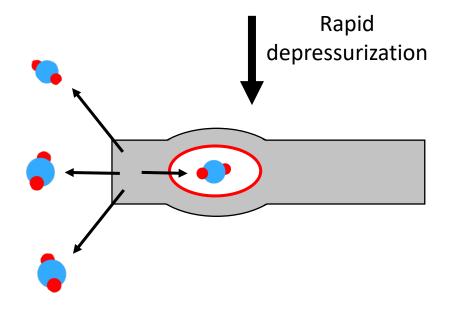
Technology for a better society




Examples of how CO₂ can affect an elastomer?

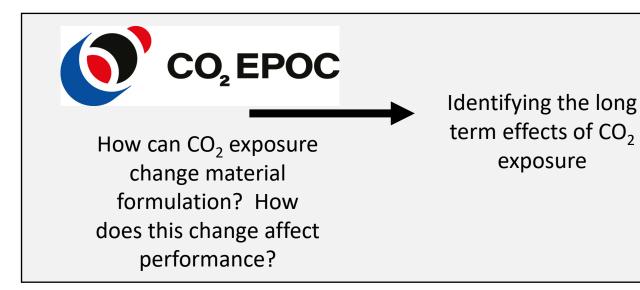
- Blister, tear formation
- Catastrophic seal failure

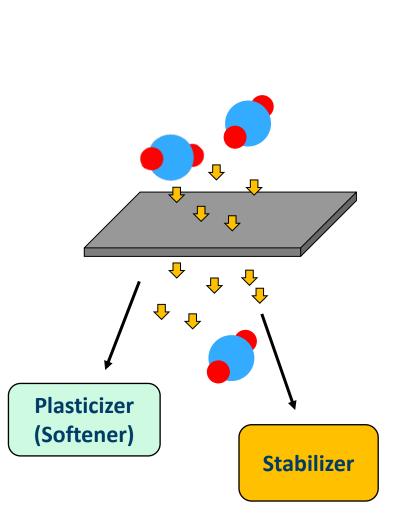
Technology for a better society


Examples of how CO₂ can affect an elastomer?

- Dissolved CO₂ can lead to rapid decompression damage
 - Blister, tear formation
 - Catastrophic seal failure

CO₂ swollen elastomer


CO, EPOC How does RGD damage evolve after exposure to CO₂?



- Removal of functional additives
- Change in properties
- Reduction in lifetime/premature failure

CO₂ EPOC

SINTEF CO₂ may not be 100% pure

Examples of highest level of impurities contained in captured CO₂ emissions from different sites (Neele et al., 2017).

Source Type Capture technology	Coal-fired power plant				Natural gas processing	Synthetic gas processing		
	Amine-based absorption	Ammonia-based absorption	Selexol-based absorption	Oxyfuel combustion	Amine-based absorption	Rectisol-based absorption		
Gaseous stream concentration ^a								
CO ₂	99.8 %	99.8 %	98.2 %	95.3 %	95.0 %	96.7 %		
N ₂	2000	2000	6000	2.5 %	5000	30		
O2	200	200	1	1.6 %	-	5		
Ar	100	100	500	6000	-	-		
NOx	50	50	_	100	-	_		
SOx	10	10	-	100	-	-		
CO	10	10	400	50	-	1000		
H ₂ S	_	-	100	-	200	9000		
H ₂	-	-	1.0 %	-	-	500		
CH ₄	-	-	1000	-	4.0 %	7000		
C2+	-	-	-	-	5000	1.5 %		
NH ₃	1	100	-	-	-	-		
Amine	1	-	-	-	-	_		

^a the values are reported in mol% (where indicated) or in ppmv. Water content not included. Desulphurisation included.

Source: doi.org/10.1016/j.ijggc.2019.102930, based on doi:10.1016/j.egypro.2017.03.1789

Technology for a better society

- CO₂ transport creates some challenging conditions for polymer materials
- Reuse of existing O&G infrastructure for CO₂ transport has economic advantages
- Polymers which perform best in some O&G applications may not be the best in CO₂ transport applications
- The <u>CO2 EPOC</u> project aims to:
 - identify which polymers are most suitable for use in CO₂ transport chains, starting from current industrial practice
 - achieve experimental characterization of these polymers covering the operational windows required by the different transport modes
 - develop models to describe polymer performance in the operating conditions of interest
 - provide a reliable prediction of the short- and long-term effects of impure CO₂ on polymeric materials

https://www.sintef.no/en/projects/2020/co2-epoc/

CO2 EPOC Research Team

SINTEF

Dr. Ben Alcock (Project Manager) Dr. Luca Ansaloni Dr. Thijs Peters Birgitte Vågenes

University of Oslo

Anu Muthukamatchi (PhD candidate) Prof. Reidar Lund

University of Bologna

Virginia Signorini (PhD candidate) Emma Ghiara (Masters student) Prof. Matteo Minelli Prof. Marco Giacinti Baschetti

Technology for a better society

RESEARCH SCIENTIST

Energy export and CO₂ infrastructure development – CleanExport

M.Sc. in Chemical and Bioengineering in 2013 from ETH Zurich (awarded with *Willy-Studer Award* for highest GPA, financed through a scholarship of the *Excellence Scholarship and Opportunity Program* of ETH) Ph.D. in Chemical process control in 2018 from NTNU Working in SINTEF Energy Research as research scientist since 2018

#CLIMITSUMMIT2023 7–9 February



<u>Content</u>

Energy export and CO₂ infrastructure development – CleanExport

Julian Straus – Project manager

Content

SINTEF The CleanExport project rational

The energy transition needs to happen fast

- Norway needs to prepare and take measures for a **rapidly** changing European energy demand
- Decarbonization **and** economic valorization of the energy resources
 - Norway's energy resources and infrastructure enable for supporting Europe with **clean** and **secure** energy
- How, under which prerequisites, and measured by which KPIs?

Energy system model-based approach for analysing energy export options in a holistic manner to avoid unconscious bias in analysis

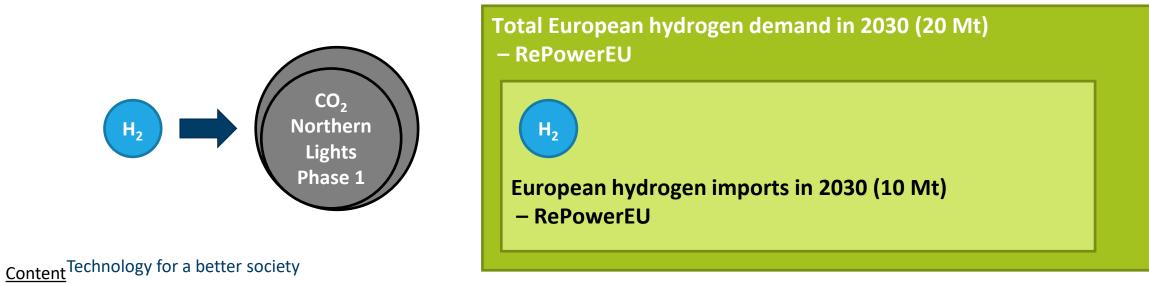
ENERGI

equino

- Industrial partners
 - Electric power industry
 - Oil and gas industry
 - Industrial gas production industry
- Research partners
 - 1 PhD student (industrial economics) and 1 PostDoc (process control)
 - 3 departments of SINTEF focusing on CCS chains, hydrogen production, and energy system modelling
- The Research Council of Norway

GASSCO

TotalEnergies



Air Liquide

How will CleanExport help CCS?

- Clean energy exports entail two CCS options:
 - Natural gas reforming with CCS in Norway
 - Import of CO₂ from industrial sites in Europe for storage in Norway
- Development of clean energy export can kick-start increased CCS usage due to large volumes of CO₂, *e.g.*, through natural gas reforming with CCS:


- Model based analysis of CO₂ infrastructure development in conjunction with:
 - Required energy demand (and development of infrastructure for supplying the required electricity)
 - Export infrastructure development (hydrogen pipelines, power transmission lines, etc.)
- Different case studies and corresponding scenarios
- Identifying of potential cost-optimal CO₂ transport networks on the Norwegian Continental Shelf
- > Avoiding problems related to lack of available energy for CO₂ transport networks

Assessment of CCS infrastructure both for domestic CO₂ and imported CO₂

Example case study (ongoing work): Decarbonising the European steel sector

- Production of iron and steel responsible for 7 % of the emissions from the energy system
- Large **production in Europe** and specifically in regions close to the **North Sea**
- Hydrogen, Electricity, and CCS relevant for the decarbonization of the steel sector

Norway's resources are relevant for all technologies. **How** can Norway contribute?

Content^{Technology} for a better society

Technology for a better society

PROJECT MANAGER

Stella Maris CCS – A large scale maritime solution

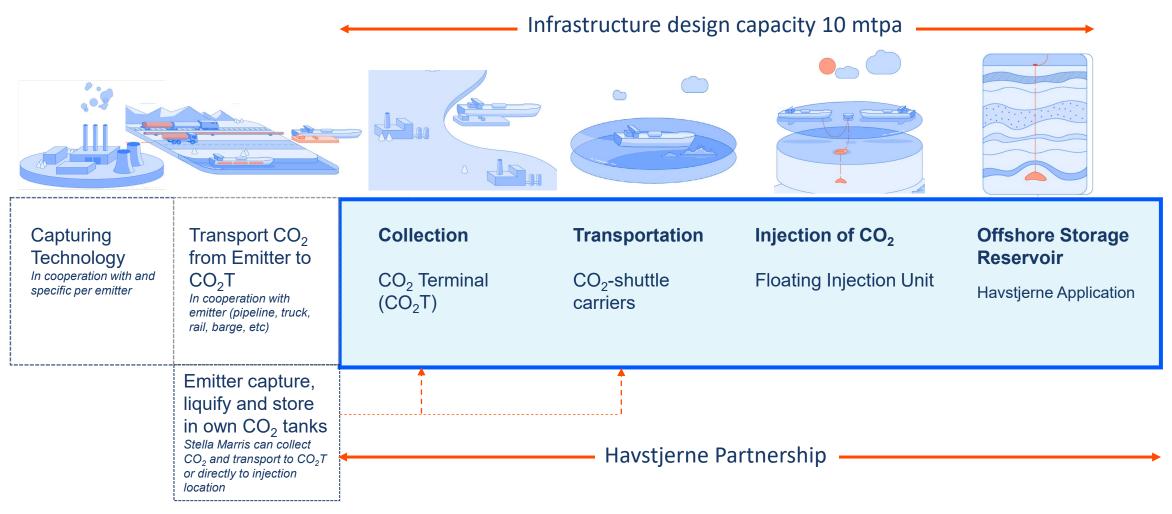
M.Sc from the Norwegian Technical University (NTNU) 1983. Experience from E&P Company, Engineering, Consulting, Brownfield operations and modifications, New-build FPSO projects. Engaged within CCS from 2019 with the Stella Maris CCS project, Altera Infrastructure.

#CLIMITSUMMIT2023 7–9 February

Content

Stella Maris CCS

:05-


<u>Content</u>

\$/ton	C	 Technical aspects squeezed
Ś	0	•VOLUME of CO ₂
	S	•Large Scale
	T	•Stella Maris CCS

altera

Stella Maris CCS

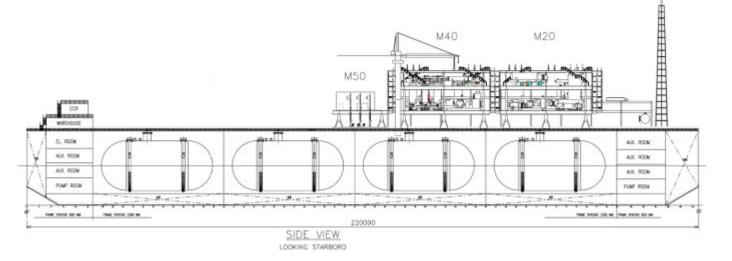
One Stop Shop

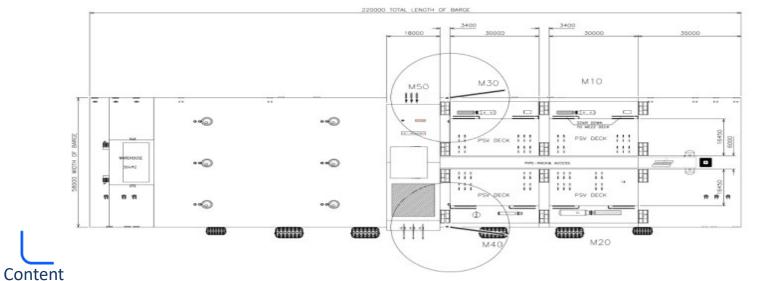
CO₂ Potential

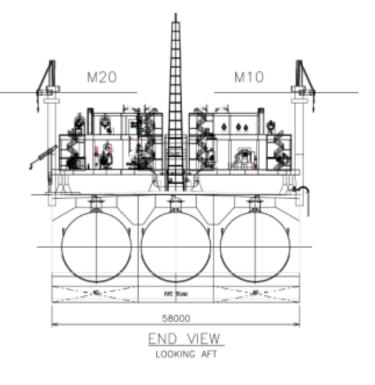
diffe

Emitters in three geographical clusters:

diffe

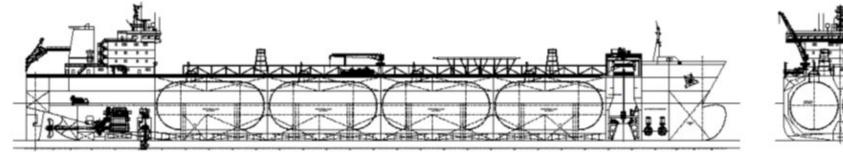

- Baltics / Sweden 1
- Eemshaven
- Portugal/Spain


13 mtpa 08 mtpa 07 mtpa 28 mtpa


th

CO₂ Collection, Processing, Storage and Offloading Terminal (CO₂T)

Collection, Processing and Export

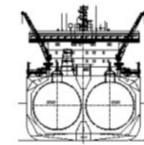


PRINCIPAL DIMENSIONS :

app. 219.80m
57.80m
24.30m
~13.00m
80,000 m3

altera

CO₂ Shuttle Carriers


- New, state of the art CO₂ shuttle carrier design ۲
- 50,000 cbm low pressure tanks •
- CO₂ stored and transported as liquid at 6,5 barg & -47°C •
- Zero emission capable •
- **Electric Power distribution** ٠
- Battery hybrid installation ٠
- LNG/Bio gas/NH₃ as fuel ٠

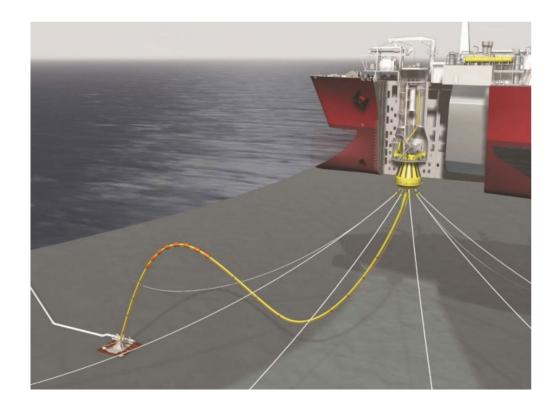
Stella Maris CCS

Content

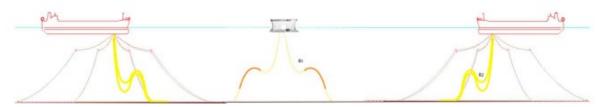
Optional:

- Size to meet needs
- Direct injection capability ۲

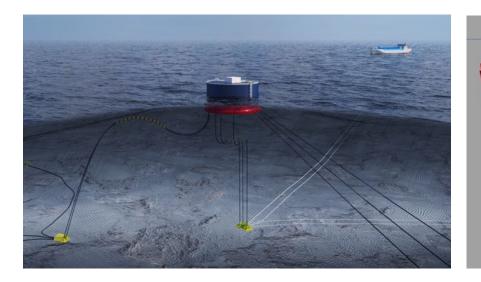
Principal dimensions:


Length o.a:	238m
Breadth (M):	38m
Depth (M):	22m
Design draft:	13m
Cargo cap:	50k cbm

Key Innovations


- Low pressure CO₂ tanks
- Dynamically positioned CO₂ carrier
- Equipment for offshore unloading of CO₂
- Power Source for injection unit

Offshore offloading



- Continious injection is ensured by always having one shuttle carrier at site
- 2nd shuttle connects and takes over before the 1st one leaves
- A Submerged Turret Loading (STL) system is used with two independent STL buoys
- Dry connection
- Electrical power cable in addition to the CO₂ offloading hose

Floating Injection Unit (FIU)

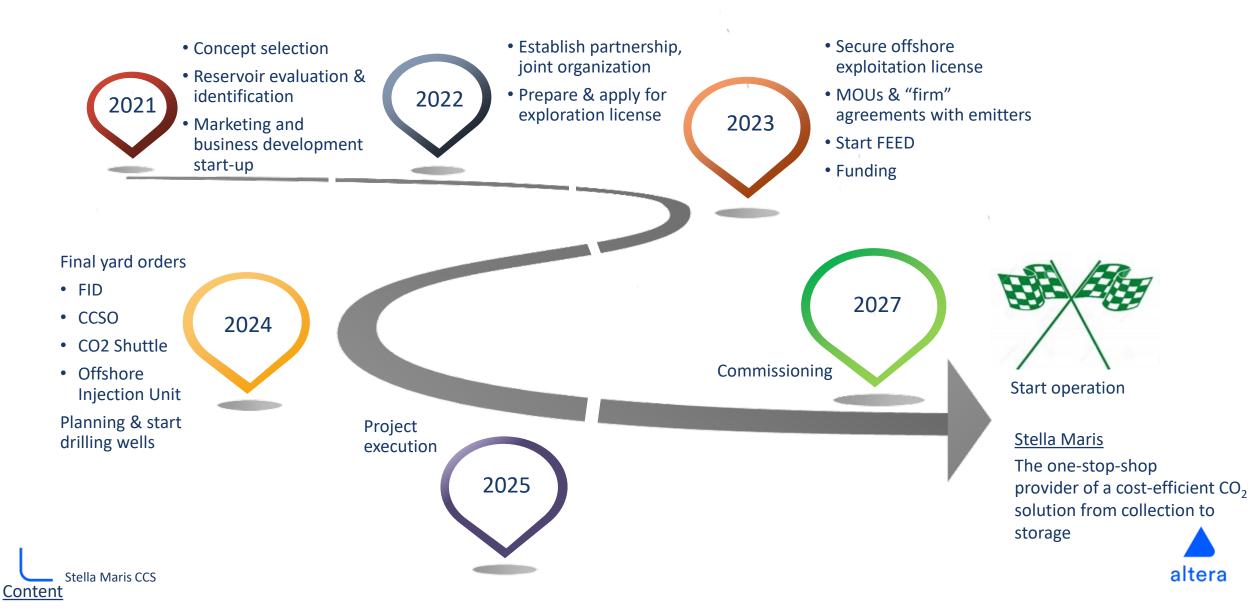
- Allows continuous injection
- Heating and injection modules below deck
- Power from Shuttle carrier (+ battery back-up)
- Unmanned and operations from shore, communication via shuttle carrier
- CO2 heated and injected into reservoir in dense phase (>5°C & 65 -160 barg)

Alternatives:

- Injection facilities on an existing offshore installation or on new fixed offshore structure
- Direct injection from shuttle carrier

Principal dimensions:

Hull Diameter 50m	
Bilge Box diameter:	62m
Vain Deck diameter	50m
Hull Depth:	22m
Design draft:	13m
Draft loaded	14m


Key Innovations

- Power from CO₂ Shuttle Carrier
- Normally Unmanned
- Equipment for offshore loading of CO₂
- Zero emission capable

altera

Stella Maris CCS – one of the keys to "the tool box" to meet climate targets

Status and way forward

Bente Helen Leinum

SENIOR PRINCIPAL ENGINEER, PIPELINE OPERATIONS TECHNOLOGY

Design and Operation of Carbon Dioxide Pipelines – Key topics to be addressed

Bente has extensive experience within the field of failure analyses, materials technology and troubleshooting, project management and project sponsor role. Experience from general industry, process industry and oil and gas industry, research and development. The activities have been including project management & participation, RBI-analyses, pipeline integrity management (PIM) projects, verification projects, fabrication control, contact with authorities, hands on experience through field inspection, laboratory work and experiments.

#CLIMITSUMMIT2023 7–9 February

WHEN TRUST MATTERS

CLIMIT Summit 2023 Design & Operation of CO₂ pipelines – Key topics

9 February 2023

Bente Helen Leinum, DNV

Content

1. Introduction

- 2. DNVs CCS ambitions & Experience
- 3. Standards and Recommended Practices
- 4. Key issues to be addressed
- 5. What to avoid examples

DNV's CCS ambition: enable the commercialisation of CCS value chains and deliver assurance to projects and stakeholders

We want to achieve this, by:

- Ensuring **safety** of CCS operations for people and environment through expert advice, testing, modelling and certification
- Developing new knowledge and practices required to maintain **integrity** of CCS infrastructure
- Driving cost efficiency through technology benchmarking, standardisation and qualification of purpose-fit solutions

Helping scale CCS – 200+ projects in past 10 years

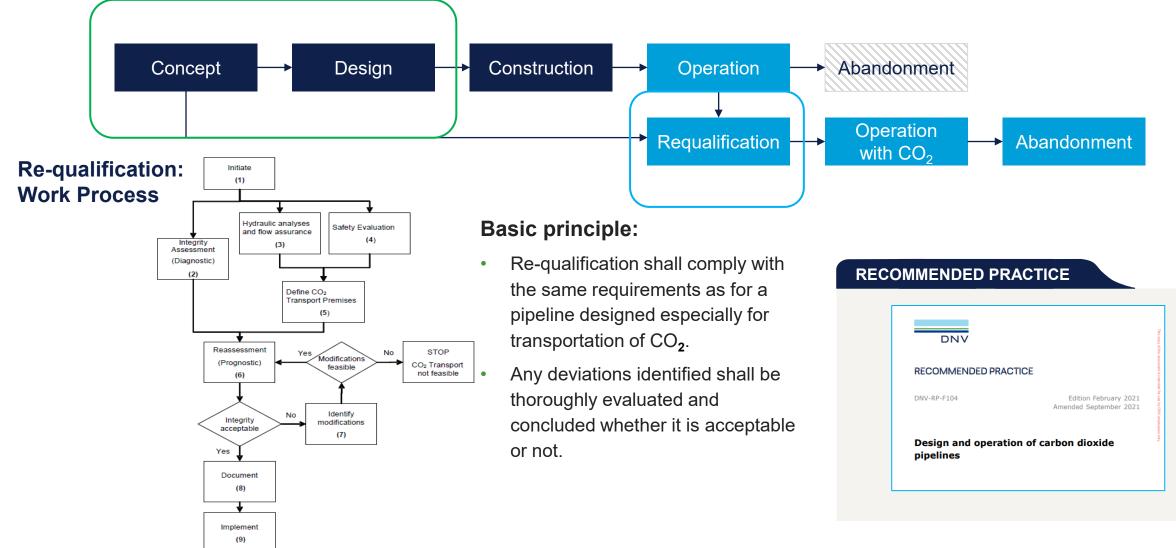
CAPTURE

- Fossil power plants
- Natural gas CO₂ reduction
- Other industrial processes
- Cost estimations
- · Introduction of new technologies
- · Technology review and benchmarking
- · Up-scaling risk assessment
- HSE risk assessment
- Accidental release and dispersion
- Value of avoided CO₂

TRANSPORT

- Pipelines
- Ships
- (Motor trucks & Rail)
- Corrosion
- · Material selection and structural design
- Flow assurance and operational issues
- Accidental release and dispersion
- CO₂ shipping insights
- Requalification of infrastructure

STORAGE


- Depleted oil or gas reservoirs
- Saline aquifers
- Enhanced oil recovery (EOR)
- Verification of storage sites
- Permanence of storage
- Risk management
- Monitoring and verification
- Public concern
- Transfer of responsibility

Available standards and guidelines for CO₂ pipelines **DNV-ST-F101** Submarine Pipeline Systems (2021) **DNV-RP-F104** DNV-RP-J201 **DNV-RP-J203** Design and operation of carbon Geological storage of carbon Qualification procedures for carbon dioxide pipelines DNV dioxide capture technology dioxide First edition: 2010 Current edition: 2021 First edition: 2017 First edition: 2010 Next edition: 2024? ISO 27919-1 **ISO 27913 ISO 27914** Carbon dioxide capture -Carbon dioxide capture, INTERNATIONAL Carbon dioxide capture, Performance evaluation methods transportation and geological **STANDARD** transportation and geological for post-combustion CO₂ capture storage – Pipeline transportation storage – Geological storage integrated with a power plant system First edition: 2016 First edition: 2017

First edition: 2018

ISO 13623 Pipeline Transportation Systems (2009)

New pipelines vs repurposing existing pipelines

45 DNV © 30 NOVEMBER 2022

CO2SafeArrest – Fracture propagation testing **CLIMIT**

Two full scale fracture arrest tests for validation of the numerical models at DNV's Spadeadam full scale test site during 2017/2018.

Full-scale fracture propagation testing to understand ductile fracture propagation/arrest behaviour of pipelines.

Improving safety and efficiency of CO_2 pipelines by developing and validating predictive models for CO_2 pipeline design.

SOLUTION

DNV's validation of fracture arrest models and design requirements will:

- Eliminate project-specific full scale fracture arrest tests
- Remove excessive conservatism (sufficient wall thickness and material properties identified)
- Reduce costs for new CO₂ pipeline projects
- \Rightarrow Leading to update of DNV-RP-F104, 2021 version

PROJECT DETAILS

Partners DNV / Climit & Energy Pipelines CRC / Commonwealth

Location UK + Norway + Australia

Date 2016-2020

46 DNV © 30 NOVEMBER 2022

CO₂ Safe & Sour JIP

The Northern Lights pipeline is being developed with tight tolerances for impurities, including H_2S .

Increased tolerance levels for impurities can give considerable value to CCS projects:

- Makes CCS more accessible for different sources/customers
- Limiting customers need for gas processing

Goal	 Increase tolerance levels for impurities resulting in sour service conditions. Enable cost effective development of Northern Lights and other CCS Hub projects.
Objective	 Understand the implication of H₂S on the integrity of CO2 pipelines and quantify limits for safe operation.
End-state	 Knowledge basis for update of DNV-RP-F104 on allowable H₂S limits in operation.

Full scale testing of Submerged CO₂ pipelines

DNV supports **Wintershall DEA** and the **OTH Regensburg University of Applied Sciences** to explore how existing natural gas pipelines in the southern North Sea can be used for future CO_2 transport.

A key activity is performing large-scale CO_2 pipeline testing of running fracture in air and in submerged (water) condition at DNV's Testing and Research Facility at Spadeadam in the UK

SOLUTION

Quantify the effect of the water surrounding the pipeline on the crack arrest behavior for a specific pipeline, and thus better define the model parameters used for different backfill types.

https://www.dnv.com/news/dnv-supports-world-first-large-scale-testing-of-submerged-co2-pipelines

New build and repurposing of CO2 pipelines - DNV RP-F104

Motivation

CO₂ transport plays an essential role in the CCS value chain and the use of pipelines may have significant advantages transporting CO₂ from the capture site to the storage site depending on transport volumes and distance.

The current DNV-RP-F104 (2021) gives recommendations to the design and operation of pipelines transporting CO_2 . However, it is recognised by the industry that the experience from recent research studies and upcoming new build and requalification projects has not been fully addressed in the current revision of the DNV-RP-F104. A Joint Industry project (JIP) will therefor be launched as a response to this feedback.

Selected topics to be addressed

- Description of dense phase vs gas phase, onshore and offshore
- CO2 stream composition from various sources
- Running ductile fracture (RDF) and fracture arrestors (solutions and spacing)
- Low temperature brittle fracture
- Environment & safety
- Regualification / repurposing
- Leak detection
- Pre-commissioning Replace hydrotesting
 - 30 NOVEMBER 2022 DNV ©

Outcome and benefits

The objective of the JIP is to provide clearer guidance based on the recent developments on relevant topics as identified to be crucial for the design and operation of CO₂ pipelines

- · The guidelines and recommendations will be implemented in the next revision of DNV-RP-F104 'Design and Operation of carbon dioxide pipelines' with special focus on selected topics as described in the various work packages.
- Schedule: 12 months duration. Kick-off Q2 2023

Contact persons: Bente Helen Leinum (bente.Leinum@dnv.com)

Sigbjørn Røneid (Sigbjørn.roneid@dnv.com)

DNV

What to avoid ?

24" dense CO2 pipeline failure – Satartia 2020

Incident:

- Pipeline failure on the Delhi 24" Transmission Line near Satartia, Mississippi.
- The failure (rupture) was reported to have occurred February 22, 2020.
- The carbon dioxide (CO2) pipeline was operated by Denbury Gulf Coast Pipelines LLC (Denbury).
- The rupture followed heavy rains that resulted in a landslide in the area.

Failure Investigation Report - Denbury Gulf Coast Pipeline.pdf (dot.gov)

50 DNV © 30 NOVEMBER 2022

CO2SafeArrest: Understanding Running Ductile Fracture

<u>Test02 Drone Footage 1x.mp4</u>

<u>4K North Turret.mp4</u>

Thank you for your attention

Bente H. Leinum, DNV, Pipeline Operations Norway, WHEN TRUST MATTERS