

Presentations 9 February – Technical session - Capture

- Bjørn Hølaas, Statkraft
- Harald Malerød-Fjeld, CoorsTek
- Mario Ditaranto, SINTEF
- Luca Ansaloni, SINTEF Industry

VP/DIRECTOR CCS

CCS solutions for WtE plants (KAN – Klimakur for avfallsforbrenning i Norge)

Previous role; 24 years within energy utilities.

Trondheim Energy; EVP retail and trading, EVP staff functions, CEO. Statkraft; SVP district heating, VP leadership support and shared services

Education:

Batchelor communication and risk management. MBA strategic management

#CLIMITSUMMIT2023 7–9 February

Content

KAN - Klimakur for Avfallsforbrenning (Climate cure for WtE in Norway)

Status and further plans Bjørn Hølaas, leader of steerco

KAN – Klimakur for Avfallsforbrenning i Norge (Climate cure for WtE in Norway)

Statkraft Varme, Forus Energigjenvinning, BIR Avfallsenergi, Returkraft og Hafslund Oslo Ceslio are Norwegian WtE plants with CCUS projects and with several common challenges

Established an industrial cooperation in 2021

KAN – Klimakur for Avfallsforbrenning i Norge

...to contribute to increased knowledge sharing and better solution for CCUS from WtE, thru increased cooperation.

Content

The handbook: CCS for WtE

- Shared knowledge and experience from partners in KAN with input from Norsk Energi and COWI
- Is based on todays knowledge ongoing development
- Is meant as inspiration, a guide, and not a final recipe.
- Aviable on: <u>www.kanco2.no</u>. (Norwegian)

Developed a reference plant, KAN Referansa, for comparison

R of of af af af af af

Constructed 2010 Waste capacity 100.000 ton/y. Max CO₂ capture;100.000 ton/y

District heating Demand: 200 GWh Waste heat: 175 GWh Peak load: 25 GWh

Steam production

40 bar / 400 °C Total heat production 280 GWh Back pressure turbine 50 GWh_{el}

CO₂-capture technologies (post combustion)

Key takeaways

- Challenges and advantages
 - Energy demand(heat/electricity/cooling)
 - Size/footprint
 - Cost (Capex/Opex)
 - Emission
- Several development projects with different maturity/TRL levels
- Absorption with amine solvent is currently the most mature technology WtE.
- Increased numbers of suppliers with different approach, business models etc

<u>Content</u>

Integration (absorption)

Illustrative with heat recovery

Most important solutions

heating

Content

- Heat supply: with hot water or steam
- Heat recovery towards district heating; with heat pumps
 cooling the capture process and heat-recovery towards district

Key takeaways (with absorption)

• Capture process; large need for thermal energy and considerable amount of cooling

... but possible to recover and increase the heat delivery to district heating network with heat pumps

- Low return temperature is important for utilization of wase heat from capture process
- «All» electricity generated from the WtE plant will be consumed by the capture process
- Must decide/find the right balance between integration complexity and energy efficiency .

KAN 8

Transport and intermediate storage

Key takeaways

- Early evaluation of method for transport and necessary infrastructure
 - Pipeline, trucks etc
 - Access to quay, utilities etc.
- Potential partners/-cooperation to reduce cost
 - Dimensioning of storage
- CO₂ volume, ship size and frequency important cost elements/drivers.

Distance, truck transport	10 km	20 km	20 km	20 km
Capture capacity	100 000 ton/y	200 000 ton/y	400 000 ton/y	200 000 ton/y
Frequency ship, 7500 m3	4 days	4 days	4 days	15 days (full ship)
Reserve intermediate storage	1 day	1 day	1 day	1 day
OPEX				
Transport	5 MNOK	20 MNOK	40 MNOK	20 MNOK
Intermediate storage	2,5 MNOK	3,7 MNOK	7,0 MNOK	10,2 MNOK
CAPEX	179 MNOK	208 MNOK	340 MNOK	371 MNOK

Not included; cost for area, civil, utilities, quay

Permanent storage

Key takeaways

- Most locations, phase 1, is connected to specific CCS projects - commercial availability in phase 2
- Risk for lack of storage capacity in 2030+, but new locations will be developed
- Important to secure access to permanent storage before investment decision.

		N					
Nr	Navn/Lokasjon	Operative/ Kapasitet	Eiere	Planlagt kapasitet – neste fase	Antatt pris	Kvalitet CO2	Merknad
1	Northern <u>Lights</u> Øygarden	2025 – 1,5 <u>Mta</u>	Equinor Shell Total	2028 – 8 <u>Mta</u>	Ukjent – Ingen kommersielle avtaler utover langskip	Har CO2 spesifikasjon	Har fått støtte til studie for økning i kapasitet.
2	Project Greensand Danmark	2025 -0,5-1,5 Mta	Wintershell Maersk- drilling GEUS	2030 – 5 <u>Mta</u>	Skissert deponiavgift på under 200 <u>Dkk</u> (uten transport)	Ikke kravspec enda, men antatt mindre strenge krav enn NL	Prisantydning ubekreftet, men oppgitt i presentasjon med Thisted kommune
3	Acorn project Skottland	2025 – 0,3 <u>Mta</u>	Storegga, Shell U.K, Harbour energy, NSMP	2027 – 1 <u>Mta</u> 2030 – 5-10 <u>Mta</u>			Bruke eksisterende rør fase 1, St Fergus terminal. St <u>Peterhead</u> port som HUB
4	Northern Endurance Østkyst GB sørlige nordsjø.	2026 – 1,7 <u>mta</u>	BP, Shell, ENI, Equinor, Total, National Grid	2030 - 17 <u>Mta</u>			BP som operatør, Skal serve Net Zero <u>Teeside</u> og Zerocarbon Humber (<u>Grimbsby</u>)
5	Liverpool Bay/ HyNst GB – vestkyst	2025 – 4,5 <u>Mta</u>	Eni UK Progressive E Cadent CF- Eertilliseres Essars INOVYN	2030 - 10 <u>Mta</u>			Planlagt HUB for industri klynge. Produsere <u>low carbon</u> Hydrogen. Uavklart om mottak fra aktører utenfor klyngen er aktuelt

Regulatory framework and commercial conditions

Cost development

 Expect decreasing cost, both for capture plants/technology and transport and permanent storage

CO₂ tax for fossil emissions :

- Target level from Norwegian government; 200 EUR/ton in 2030
- Supports tax on fossil CO₂ emissions, alternative WtE should be included in ETS
- Framework for CO₂ tax should be arranged so that the totality of instruments supports circular economy and makes it possible to realize CO₂ capture

Market for carbon removals:

 Need viable framework for carbon removals (biogenic CO₂). CO₂ certificates for stored biogenic CO₂ is an important revenue source for WtE.

Investment support/support schemes:

- Need for a time limited support schemes/investment support to realize CCS from WtE .
- Need project financing support for further project development

NOK/

KAN phase 2- way forward (tentative)

٠

Framework

- Structure and arrangement for fossil CO₂ tax
- Framework for carbon removals (biogenic CO₂)
- Framework for investment support/supports schemes

Content

Possible market mechanism/ policy instruments - preferred type and level

Commercial

Market for Carmon
 removals

Cooperations

- Continue to share knowledge within KAN
- Discussion and dialog within other WtE plants
- Sharing of knowledge with actors in Sweden and Denmark
- Creating social and political acceptance

12

WWW.KANCO2.NO

Content

Harald Malterød-Fjeld

SENIOR SCIENTIST

Protonic membrane reformer technology for conversion of natural gas to hydrogen and $\rm CO_2$

Harald Malerød-Fjeld works as a senior scientist in CoorsTek Membrane Sciences. He has a PhD in materials science and has specialized in high temperature electrochemistry and thermodynamics. In CoorsTek, he works with testing and analysis of multi-cell electrochemical reactors at high temperature and high pressure.

#CLIMITSUMMIT2023 7–9 February

Content

Protonic membrane reformer technology for conversion of natural gas to hydrogen and CO₂

Harald Malerød-Fjeld

Senior Scientist, CoorsTek Membrane Sciences

CLIMIT SUMMIT, Larvik, 9 February 2023

•	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
	•	٠	•		٠		٠	٠		٠	٠	٠		٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		•	٠	٠		٠	٠	٠			٠	٠	٠		•
	٠	٠	٠	٠	٠		٠					•				٠											•	•			٠			•	٠	•		٠								•
			•																					٠			•							•		•										
	•			٠							•									•						•	•					•	•	•	٠											•
												•															•	•					•									•				•
-	-	-	-	-	-	-	-		-	-																																				

	•			٠		۰	٠	•		٠	۰	٠		٠	٠	٠	٠	٠	۰	۰	•	٠	٠	٠	•		٠	•	٠	٠	٠		•	٠		٠	٠	٠	٠	•		٠	٠
	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	•	•	٠		•		٠	٠	•	•	•	٠	٠	•	٠	•	٠	٠	٠		٠	٠	•	٠		•	٠
	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	•	•	•	٠	•	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠		•	٠
	•	٠	•	•	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	•	٠	•	٠	•	٠	•	•	•	٠	•	٠	٠	•	٠	•	•	٠	•	٠	•	٠		•	٠
nte	• en	t	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
,	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	nt	nten	ntent																																								

	٠	٠	٠		٠	٠	۰	٠	٠	•	•	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	(
	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	•	٠		•	٠	٠	٠	•	٠	•	٠	•	•		
	٠	•	٠		•	٠	٠	٠	٠	•		٠	٠	•	٠	
	٠		٠		•		٠		•	•			•	•	٠	
	•	•	٠	٠	•	٠	٠	•	•	•	•		•	•	٠	
	٠	٠	٠		٠	٠	٠	٠	٠	•			٠	٠		
	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠		
	٠	٠	٠		٠	٠	٠	٠	•	٠	•	٠	٠	٠		
	٠		٠			٠	٠							٠	٠	
	٠	٠	٠		•	٠	٠	٠	•	•	•	٠	٠	٠	٠	
	٠	٠	٠		•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	
	٠	٠	۰	٠	•	٠	۰	٠	•	•	٠	٠	٠	٠	٠	,
	٠	٠		۰	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	۰	۰	۰	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	,
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	۰	٠	٠	•		٠	٠	٠	٠	
	٠	٠	۰	۰	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	
		٠		۰	٠	٠	٠	٠	٠	•	٠	٠	٠	٠		
· · · · · · · · · · · · · · · · · · ·	٠	۰	۰		٠	٠		٠	٠	٠	٠	٠	٠	٠		
· · · · · · · · · · · · · · · · · · ·		٠	٠		•	٠	۰		•	•	•	٠	٠	٠		
· · · · · · · · · · · · · · · · · · ·	٠	٠	۰		٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	
	٠	٠		•	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	
	•	•	٠	•	٠	٠	•	•	•	•	٠	٠	•	•	٠	

MEMBRANE SCIENCES

About us

COORSTEK MEMBRANE SCIENCES:

- Technology development company located in Norway with ~25 employees / contractors
- Leading position in the development of solid-state proton conductors, the most efficient of all hydrogen technologies
- Global network of R&D collaborations, regular publications in top scientific journals (Nature/Science branded)
- Business focus on collaboration agreements with major energy companies for joint technology development

COORSTEK:

- Global advanced materials company with 6 000+ employees and leading position in technical ceramics
- Headquarter in Colorado, USA, with operations world-wide

<u>Content</u>

HYDROGEN

PROTON CERAMIC MEMBRANES operate at elevated temperatures between 400°C and 800°C by breaking hydrogen into its subatomic particles (PROTONS and ELECTRONS) and then transporting protons across a solid dense ceramic electrolyte

PROTON CERAMIC MEMBRANES offer unique opportunities for more efficient hydrogen production

CoorsTek Worldwide

COORSTEK

History of Innovation Within Protonic Membranes

- Publications in leading academic journals
- History of collaboration and development with leading industry players
- Multiple prototypes deployed, with TRL6 achieved

Content

Protonic Ceramic Electrochemical Reactor

Selective extraction of hydrogen through dense ceramic layer

Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

Harald Malerød-Fjeld^{®1}, Daniel Clark^{1,2}, Irene Yuste-Tirados^{®1}, Raquel Zanón³, David Catalán-Martinez³, Dustin Beeaff^{®1}, Selene H. Morejudo^{®1}, Per K. Vestre^{®1}, Truls Norby², Reidar Haugsrud^{®2}, José M. Serra^{®3*} and Christian Kjølseth^{®1*}

Protonic Ceramic Electrochemical Reactor

Selective extraction of hydrogen

PCER stack for electrochemical H₂ production

Stack for electrochemical H₂ production

PCER stack

REPORT | CATALYSIS

Single-step hydrogen production from NH₃, CH₄, and biogas in stacked proton ceramic reactors

DANIEL CLARK (), HARALD MALERODFJELD (), MICHAEL BUDD (), HENE YUSTE-TIRADOS (), DUSTIN BEEAFF (), SIMEN AAMOOT (), KEVIN NGUYEN (), LUCA ANSALONI (), THIJS PETERS (), L.,L AND CHRISTIAN KJØLSETH () (+7 authors) Authors Info & Affiliations

- Series of six barrels (six single cells per barrel)
- U-bend type of gas flow
- Electrically connected in parallel
- Ni-based glass-ceramic composite ICs

inlet

outlet

Microthermal heat integration

Content

PCER stack for electrochemical H₂ production

- CFD multiphysics modelling
- Gas flows heat transfer current distribution reaction kinetics

U-bend 800 790 outlet 780 770 empei Axial shell 750 Prature 730 (° 720 () outlet inlet ----> 710 700 Reactor coordinate 10 15 20 25 30 36.4 (cm)3 Segment # 800 780 Temperature (°C) 760 740 U-bend in 720 U-bend out - Axial 700 U-bend heat transfer 680 15 20 5 10 25 30 35 0

- Series of six barrels (six single cells per barrel)
- U-bend type of gas flow
- Electrically connected in parallel
- Ni-based glass-ceramic composite ICs
- Microthermal heat integration

<u>Content</u>

D Clark et al., Science 376 390-393 (2022).

Reactor coordinate (cm)

PCER stack performance

- ✓ H_2 recovery >99%
- ✓ High pressure operation enabled
- ✓ Faradaic operation
- ✓ High purity hydrogen production
- ✓ Capture ready CO₂ stream

Content

D Clark et al., Science 376 390-393 (2022).

Proton membrane reformers: Strong lifetime performance

- High H₂ purity, CH₄ conversion and CO₂ yield
 - Materials employed in the core of the PMR technology, including materials used for sealing, are stable under relevant industrial conditions
 - Recovery of performance after process shutdowns and unstable test rig conditions
- SEU (36 cell stack) testing over 6500 hours (and running):
 - Stable catalytic activity for SMR and WGS reactions
 - No degradation of membrane's ability to transport hydrogen

25 CoorsTek Membrane Sciences

Technology status @ CTMS

- Pilot line for fabrication of membranes
- Semi-automated stack fabrication procedure developed
- Focus on protonic membrane reformer for hydrogen generation >70 stacks fabricated (36 cells per stack)
- Laboratory and pilot testing > 40 bar confirms
 - Hydrogen production $\sim 2 \text{ kg H}_2$ per day on multistack panels Ο
 - CO_2 concentration > 95% \bigcirc
- Developed membrane system can be used for adjacent technologies

Content

Why this technology can become a winner in the future

- High system level energy efficiency
 - Process intensification
 - High hydrogen recovery rate
 - Microthermal heat integration

Electrification

• No use of NG for heating and in the carbon capture process

Efficient carbon capture

- 99+% carbon capture rate feasible on system level
- High CO₂ concentration in stream for liquefaction

Content

<u>Content</u>

L. P. A.

1

E

Thank You

۰	٠		٠	٠	٠	٠	۰	۰	٠		٠	٠	٠	٠	٠		۰	٠	۰	٠	٠	۰	٠	٠		٠	٠	٠	*	٠	۰		٠	٠	٠	٠	٠		٠	۰
٠	٠	٠	٠	٠	٠	٠	۰	۰	۰	۰	٠	٠	٠	٠	٠		۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	۰
٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠		٠	٠
•	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	۰	۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠		٠	٠	٠	٠
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠		٠	٠	•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠		٠	٠

. .

MEMBRANE SCIENCES

. .

CHIEF SCIENTIST

Enabling carbon capture with oxy-fuel combustion technology for the Wasteto-Energy sector (CAPEWASTE)

Mario Ditaranto is Chief Scientist at SINTEF Energi and has more than 20 years of professional experience in the field of combustion science and technologies covering combustion systems for power and industrial processes. He currently leads research projects in oxy-fuel combustion for the Waste-to-Energy and Cement sectors, and in the use of hydrogen and ammonia for gas turbines and furnaces.

#CLIMITSUMMIT2023 7–9 February

CAPEWASTE project

Enabling carbon capture with **oxy-fuel combustion** technology for the **Wasteto-Energy sector**

Mario Ditaranto, Michael Becidan, Chao Fu, Mette Bugge (SINTEF Energi)

Johnny Stuen (ex-City of Oslo REG)

SINTEF

Waste-to-Energy: a growing industrial sector and an opportunity for CCS waste hierarchy

- Worldwide : 2,100 Mt MSW are generated annually
- China: 190 Mt/yr of waste produced
- Europe: 160 Mt/yr of waste produced

Waste-to-Energy with CCS – which capture technology?

160 Mt/yr of waste produced i Europe

- ca. 100 Mt/yr MSW treated in ca. 500 plants: <u>Retrofit CCS</u> potential
- ca. 60 Mt/yr MSW landfilled: <u>Greenfield CCS</u> potential

oxy-fuel combustion capture?

Norwegian Context

Oslo 2030

MÅLSETNING - Å BLI KLIMAROBUST OG TILNÆRMET UTSLIPPSFRI

7 Oslo skal ha en forsvarlig, kretsløpsbasert avfall- og avløpshåndtering uten utslipp av klimagasser der avfall og restkomponenter utnyttes som ressurser 1 000 tonn CO₂-ekvivalenter

CAPEWASTE methodology

Oxy-fuel WtE Process

510 kg CO₂/t_MSW of negative emission at Haraldrud plant

Assumptions:

- MSW supply: 130 000 t/yr
- Air leakage: 2.5%
- Oxygen content at furnace outlet: 4%

SINTEF

- Oxygen purity: 95 mole%
- FGR: 75.7 %

Oxy-fuel WtE Process

Optimization of power consumption in order of priority:

1) minimize furnace air leakage
 2) minimize furnace oxygen excess
 3) increase oxygen purity

Oxy-fuel Combustion

 Burning of MSW in oxy-fuel atmosphere is feasible with no apparent showstopper

Stable limits under low O₂ mapped
 -> Flue Gas Recirculation control

Propensity to NOx similar to air
 -> existing cleaning units adequate

 $11\% O_2$

basis

ng/Nm³, dry

Full scale plant CFD model

Effect of oxygen distribution on conversion and burn-out and compared to air

Conclusions

- An oxy-fuel plant at Haraldrud can remove ca. 510 $\rm kg_{\rm CO2}/t_{\rm MWS}$ from the atmosphere
- Oxy-fuel combustion of MSW is feasible
- The critical parameters for optimizing plant efficiency are highlighted
- Simulation tools are ready for oxy-fuel combustion of complex MSW fuels
- What's next?

Oxy-fuel technology demonstration in Årdal?...

CETPartnership EUROPEAN PARTNERSHIP

NETOX Proposal to 2nd round

Acknowledgements

Supported by the Research Council of Norway under the CLIMT program grant nr. 629364 (CapeWaste) and by the ERA-NET Accelerating CCS Technologies initiative grant nr. 299683 (NEWEST-CCUS)

RESEARCH SCIENTIST

Membranes with Aligned nanostructures for CO₂ separation

Luca Ansaloni is a research scientist in the Sustainable Energy department of SINTEF Industry (part of SINTEF AS). He obtained his PhD in 2014 from the University of Bologna with a thesis on transport properties of gases in membranes for CO_2 capture. After the PhD, he served as postdoc in the Chemical Engineering department at NTNU (2015 – 2018) and joined SINTEF Industry in 2018

#CLIMITSUMMIT2023 7–9 February

<u>Content</u>

MEMBRALIGN - Membranes with Aligned nanostructures for CO₂ separation

SINTEF

Luca Ansaloni – SINTEF AS

Larvik, 7-9 February 2023

Content

Teknologi for et bedre samfunne

CLIMIT

The MembrAlign project was financed by the CLIMIT program of NFR **Project details**:

- Type: IPN (Innovation Project for the Industrial Sector)
- Running period: 2018 2022
- Budget: 11.5 MNOK, of which 7.7 MNOK from NFR
- Partners:

Norwegian University of Science and Technology

Polymeric membranes for CO₂ capture

- A membrane is a barrier layers that allows the selective permeation of one components (CO_2) while blocking the other gases to pass
- Polymer membrane represents an attractive technology to capture CO₂ from flue gas
 - Modularity

SINTEF

- No use of harmful chemicals
- Low energy consumption (hybrid processes)
- Polymer membrane represents an attractive technology to capture CO₂ from flue gas

Teknologi for et bedre samfunn

Teknologi for et bedre samfunn

• The MembrAlign project employed manipulation at the nanostructural level to improve the performance of hybrid membranes for CO₂ capture

• CondAlign has developed a proprietary technology to align particles in polymeric films through the use of electric field (via di-electrophoresis)

Key advantages of CA technology:

- Material and particles' size independent, so any type of polymer/particles combination can be used
- Short alignment time is required, therefore it can be easily upscaled in R-2-R fabrication

Polyurethane film (approx. 400µm thickness) w/Silver coated glass particles (approx. 25µm)

• Example of through plane alignment using Pebax 2533 as polymer phase and a μ m-size MOF (NH₂-MIL53) for CO₂ capture application

Not Aligned

Through Plane Aligned

NH₂-MIL53

Teknologi for et bedre samfunn

SINTEF

Effect of CA technology on membrane

- The positive effect of CA technology on a PU membrane loaded with Graphite particles was demonstrated
- The effect of CA technology is particulary evident at high particles loadings, where the CO₂ permeability is enhanced
- Minor positive effects are observed on the selectivity

• CondAlign has developed a proprietary technology to align particles in polymeric films through the use of electric field (via di-electrophoresis)

• During the project it was found that the alignment technique has also a positive impact on the pure polymer performance

• 2 Patents were submitted and approved at the end of the project

		US 20230026781A1
(19)	United States Patent Application Publicati HEMMEN et al.	On (10) Pub. No.: US 2023/0026781 A1 (43) Pub. Date: Jan. 26, 2023
(54)	A GAS SEPARATION ARTICLE, A METHOD FOR PRODUCING SAID GAS SEPARATION ARTICLE AND USE THEREOF	B01D 69/107 (2022.08); C10L 3/104 (2013.01); C10L 3/103 (2013.01); B01L 2323/35 (2013.01); C10L 2290/548 (2013.01)
(71)	Applicant: CONDALIGN AS, Oslo (NO)	(57) ABSTRACT
(72)	Inventors: Henrik HEMMEN, Oslo (NO); Linn Cecilie SØRVIK, Oslo (NO); Luca ANSALONI, Oslo (NO); Thijs Andries PETERS, Bekkestua (NO); Maria Teresa GUZMAN GUTHERREZ, Trondheim (NO); Liyuan DENG, Trondheim (NO)	The disclosure provides a method for producing a gas separation article, said gas separation article comprising: a gas separation membrane, optionally a support, and optionally an additional support said method comprising the steps of:
(73)	Assignee: CONDALIGN AS, Oslo (NO)	 a) providing a matrix comprising: a matrix material having a viscosity from 1 cP to 40000 cP, particles, said matrices from from functional and an anone
(21)	Аррі. № 17737,708	tubes, and optionally a solvent,
(22) (86)	PCT Filed: Dec. 18, 2020 PCT No.: PCT/EP2020/087237 § 371 (c)(1), (2) Date: Jun. 17, 2022	b) contacting the matrix of step a) with a support com- prising at least one side, said at least one side facing said matrix, thereby forming (i) a matrix side in contact with the support and (ii) a matrix side opposite the side in contact with the support.
(30)	Foreign Application Priority Data	c) optionally contacting the matrix side opposite the side contacting the support with an additional support,
Dec	. 19, 2019 (NO) 20191496	d) subjecting said matrix being in contact with said support to one or more electric fields whereby the
(51)	Publication Classification Int. Cl. B01D 6700 (2006.01) B01D 53/22 (2006.01) B01D 69/14 (2006.01) B01D 71/54 (2006.01) B01D 69/14 (2006.01) B01D 71/54 (2006.01) B01D 69/10 (2006.01) B01D 70/06 (2006.01)	particles form particle groups in a putrality of substan- tially parallel planes, said particle groups in each of said plurality of substantially parallel planes being aligned substantially parallel with the one or more electric fields, e) fixating the matrix material so as to fixate the particle groups thereby forming a gas separation membrane and f) optionally removing the support and/or the additional
(52)	U.S. Cl. CPC	support. The disclosure also provides a gas separation membrane obtainable by the aforementioned method as well as use thereof for separation of gases in a gas mixture.

ABSTRACT

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2023/0022574 A1 Jan. 26, 2023 HEMMEN et al. (43) Pub. Date:

(57)

(54)	A METHOD FOR PRODUCING A GAS
	SEPARATION ARTICLE AND USE THEREO

```
(71) Applicant: CONDALIGN AS, Oslo (NO)
(72) Inventors: Henrik HEMMEN, Oslo (NO); Linn
```

```
Cecilie SØRVIK, Oslo (NO); Luca
              ANSALONI, Oslo (NO); Thijs
              Andries PETERS, Bekkestua (NO);
              Maria Teresa GUZMAN
              GUTIERREZ, Trondheim (NO);
              Liyuan DENG, Trondheim (NO)
(73) Assignee: CONDALIGN AS, Oslo (NO)
```

(21) Appl. No.: 17/757,703

(22) PCT Filed: Dec. 18, 2020 (86) PCT No.: PCT/EP2020/087234

§ 371 (c)(1), (2) Date: Jun. 17, 2022

Foreign Application Priority Data (30)

Dec. 19, 2019 (NO) 20191497

Publication Classification

(51)	Int. Cl.	
	B01D 69/10	(2006.01)
	B01D 69/14	(2006.01)
	B01D 53/22	(2006.01)

```
(52) U.S. Cl.
     CPC .
```

B01D 69/10 (2013.01); B01D 69/14 (2013.01); B01D 53/228 (2013.01); B01D 2256/16 (2013.01)

The present disclosure provides a method for producing a gas separation article, said gas separation article comprising: a gas separation membrane, optionally a support, and optionally an additional support, said method comprising the steps of: a) providing a matrix. said matrix having a viscosity from 1 centipoise to 40000 centipoise, said matrix comprising or consisting of one or more monomers, oligomers and/or polymers, and optionally a solvent. b) contacting the matrix of step a) with a support comprising at least one side, said at least one side facing said matrix, thereby forming (i) a matrix side contacting the support and (ii) a matrix side opposite the side contacting the support, c) optionally contacting the matrix side opposite the side contacting the support with an additional support, d) subjecting said matrix contacted with said support to one or more electric fields that is/are substantially parallel to a plane in which the support extends, or substantially perpendicular to a plane in which the support extends e) fixating the one or more monomers, oligomers and/or polymers of the matrix subjected to one or more electric fields in step d) thereby forming a solid gas separation membrane, and

f) optionally removing the support and/or the additional support.

The present disclosure also gas separation article obtainable by the aforementioned method as well as use of said gas separation article for separation of gases in a gas mixture.

Achievements:

- Demonstrated the feasibility to apply CondAlign technology for the fabrication of membranes for CO₂ capture (thin film composite membranes)
- Extented CA technology to the case of in-plane alignment
- 2 patents

Outlook:

- Establishment of CondAlign Capture AS https://www.condalign.no/about/condalign-capture/
- Looking for possible partners in the membrane manifacturing field

Teknologi for et bedre samfunn

