

CCS deployment in the Netherlands

- > Martijn van de Sande
- > martijn.vandesande@rvo.nl

RVO – The Netherlands Enterprise Agency

- We are part of the Ministry of Economic Affair and Climate and carry out the policy set up by the Ministry.
- We support business with investing, developing and expanding business in NL and abroad.
- Supporting a wide range of subjects, such as agriculture, energy, innovation.
- For CCS, we advise the Ministry in setting up policy and execute the main support mechanisms for deployment (SDE++) and innovation (ACT, Pilot/Demo, R&D, feasibility study schemes).
- We might be most comparable to Innovation Norway, but seem to be a bit more broad.

Contents

- 1. Context of CCS in the Netherlands
- 2. Regulations on EU and national level
- 3. Set up of the CCS market
- 4. Incentives for CCS project developement
- 5. SDE++ scheme
- 6. Experiences, evaluation and outlook
- **7.** CCU
- 8. Key messages

1. Context: CCS in the Netherlands

- > Emitters vs Sinks
- > 2019 Climate agreement: Industry reduction goal of 14,3Mtpa in 2030, of this 7,2Mtpa through CCS
- > 2022 Coalition agreement increasing the overall CO2-reduction goal from 49% to 55-60%
- SDE++ designated to fund CCS, but with limitations

1. Context: CO2 storage projects

> Porthos

- Initiative of Rotterdam harbour authorities, Gasunie and EBN
- Has 2,1 bln SDE grant for storing 2,5Mtpa from 2025, in total 37Mt
- 4 industrial parties will supply the CO2
- Conditional FID has been taken
- <u>Storage permit almost granted</u>

> Aramis

19 May 2022

- Initiative by Shell and Total, joined by Gasunie and EBN
- From 2028 have an offshore backbone, able to store 20Mtpa.
- Funding yet to be given

's GRAVENZANDE NAAIDWII OEK VAN HOLLAND ARAMIS PORTHOS

Porthos

19 May 2022

6

.....

2. Regulations on EU and national level

EU CCS directive:

- Provides the legal framework for environmentally safe geological storage of CO2 by:
- Introducing mandatory storage permits
- Setting up monitoring requirements
- Procedures in case of leakage
- Post closure obligations
- Liability transfer after minimum 20 years
- Annex II sets out the monitoring plan
- Annex I, step 3.3 sets out the risk assessment

 Describes the procedure for application and granting of a storage permit as well as the national requirements:

<u>NL Mijnbouwwet (mining law):</u>

- Yearly monitoring updates
- Independent Mining council provides advise on permits
- SodM is supervisor
- <u>NL Mijnbouwbesluit (mining decree)</u>
 - Discription of contents of monitoring plan (art 29f) and a risk management plan (art 29c -> reference to AnnexI, step 3.3 of the EU CCS directive)

3. Set up of the CCS market

- Laid down by law, there are several responsibilities with the Mining Council and SodM (state supervision of mining activities).
- > EBN has traditionally respresented the state in oil and gas activities and is now to do the same with CCS.
- > Gasunie, government owned

TSO for gas and is involved in CO2 transport activities.

All the rest is open to the market;

ebn

- any owner of O&G assets could start a storage project;
- any transporter of CO2 could transport CO2;
- and any emitter of CO2 could start capturing its CO2.

4. Incentives for CCS project development

- By implementing the Climate agreement, a set up was made of carrots and sticks:
 - SDE scheme: main driver for investment, higher share of financing should come from industry
 - ETS: price up into the 90 euro/ton range
 - National carbon levy: a national top-up on ETS for emissions above benchmark, up to 125 euro/ton in 2030, including waste incineration sector

8

5. SDE++ scheme

- > In a nutshell:
 - It is a subsidy scheme bridging the difference between cost and revenue for a set period. Difference has a maximum.
 - Subsidy can be requested in a (bi)yearly tender in which "all" CO2 mitigating technologies compete.
 - Bidding is competitive, based on subsidy intensity of the bid, as budget per round is limited.
 - Maximum cost per technology is determined yearly by PBL.

This scheme ran from 2011 to 2020 with only renewable energy technologies:

Verplichtingenbudget

per technologie in de verschillende SDE+-rondes

9

5. SDE++ scheme: embedding CCS

- The emitter applies for subsidy and needs to have the full chain 'in place'.
- > Bid/subisidy includes T&S costs.
- Duration of the subsidy is set to 15 years.
- > ETS price will serve a proxy for revenues (correction amount).
- Competition based on subsidy intensity which includes, cost, revenue, emission factor (kg CO2 avoided per ton CO2 captured).

- Some relaxation of requirements on:
 - permits

^{*} The bid price is equal to or lower than the technology specific base amount.

realisation terms and milestones

5. SDE++ scheme: embedding CCUS

- A. Subsidy intensity: in order to rank technologies with different relevant units with different emission factors (€/ton CO2 reduced)
- B. Base amount: technology cost (€/ton CO2 captured)
- C. Long term term price: 2020-2034 average CO2 price (€/ton CO2 captured)
- D. Emission factor: kg CO2 avoided per ton CO2 captured

Tabel 17.21

- E. Correction price/amount: 2020 average CO2 price (€/ton CO2 captured)
- F. Base/Bottom price: 2/3 of long term price (€/ton CO2 captured)
- G. Financial gap / unprofitable top: subsidy (€/ton CO2 captured)

CO₂-afvang en -opslag, rangschikkingsparameters

Categorie	Productie- type [eenheid]	Subsidie- intensiteit [€/tCO₂] A=(B-C)/D	Basisbedrag [€/eenheid] B	Langeter- mijnprijs [€/eenheid] C	Emissiefac- tor [kg CO ₂ / eenheid]
CCS, gedeeltelijke CO2-opslag bij bestaande installaties, gasvormig transport (variant 1A)	t CO ₂	53	108,2214	60,5285	906,5120
CC5, gedeeltelijke CO ₂ -opslag bij bestaande installaties, vloeibaar transport (variant 1B)	t CO ₂	85	136,9981	60,5285	901,7020

Source: PBL Eindadvies basisbedragen 2022

6. Experiences, evaluation and outlook

Aanvragen SDE++ 2020

4.112 aanvragen

- In 2020, EUR 2,1 bln budget application by CCS for 2,5 Mtpa CO2 reduction, by Porthos emitters.
- 2021 bids are still in evaluation; 11 projects submitted, requesting EUR 6,1 bln aimed at 4,7 Mtpa CO2 reduction.

6. Experiences, evaluation and outlook

- > For 2021, SDE++ has been expanded to CCU, liquid transport,
- > For 2022, several improvements are again made:
 - CO2 capture and production of hydrogen from refinery waste gasses is included.
 - Longer lead times for project allowed.
 - Non-ETS companies can apply for all CCS technology categories.
- > Minor improvements are foreseen, such as
 - Offering a choice between permits and a bank guarantee
 - More categories depicting differ cost set ups
- In the long term, ETS + national CO2 levy could make a roll out possible, while also the CCS cap could be reached and no new subsidies are given.

7. CCU

- CCU is included in the SDE++ from 2021 onwards.
- For the moment only includes delivery of CO2 to greenhouses.
- CO2 reduction would follow from replacing natural gas CHP.
- In 2021, 29 projects, requesting EUR 1,1 bln for

achieving 0,67Mtpa CO2 reduction, requested support.

 More CCU routes are evaluated for including in the future.

8. Key messages

- CCS is marked necessary in the Netherlands, but public support is still limited.
- > We have a long-lasting generic stimulation regime which now includes CCS.
- > We are very satisfied with the first results for CCS in the SDE++.
- > We look at expanding support to accommodate more routes for CO2-reduction.

Thank you for your attention!

> Questions?

 If any questions remain, please contact me at martijn.vandesande@rvo.nl

BACK UP

Voortgang van projecten SDE en SDE+ (inclusief Wind op Zee) op 1 september 2020

	🂋 ingetrokken*	in ontwikkeling	gerealiseerd
SDE 2008			
SDE 2009	1		
WOZ 2009			
SDE 2010	2		
SDE+ 2011	111		
SDE+ 2012	1////		
SDE+ 2013	//////		
SDE+ 2014	111		
SDE+ 2015	1		
WOZ 2015 (Borssele k	avels I en II)	1	
SDE+ 2016 (voorjaar)			
SDE+ 2016 (najaar)			
WOZ 2016 (Borssele k	avels III en IV)		
SDE+ 2017 (voorjaar)*	**		
SDE+ 2017 (najaar)			
WOZ 2017 (Hollandse	e Kust, kavels I en II)		
SDE+ 2018 (voorjaar)			
SDE+ 2018 (najaar)			
WOZ 2018 (Borssele k	kavel V)	1	
WOZ 2018 (Hollandse	e Kust, kavels III en IV)		
SDE+ 2019 (voorjaar)			
SDE+ 2019 (najaar)			
WOZ 2019 (Hollandse	e Kust, kavels III en IV)		
SDE+ 2020 (voorjaar)			
	PI 10 5	0 5 10 14	5 20 25

project waarvan de subsidie is gehonoreerd, maar waarvan later de subsidietoekenning is ingetrokken ** inclusief tender Monomestvergisting

*

Results from the past

Tender system

Tabel 18.2 Rangschikkingstabel

Categorie	Subsidie-	Productietype	Findadvies basis-	langeter-	Emissiefactor
categorie	intensiteit [€/tCO2]	[eenheid]	bedrag SDE++ 2022 [€/eenheid]	mijnprijs [€/eenheid]	[kg CO ₂ /eenheid]
	A=(B-C)/D		В	с	D
Extra CCU bestaande installatie, bestaande pijpleiding	-47	ton CO ₂	31,5416	70,8765	836,6250
Extra CCU bestaande installatie, nieuwe pijpleiding	-30	ton CO ₂	45,4937	70,8765	836,6250
CCU nieuwe installatie, pre-combustion, bestaande	-17	ton CO ₂	56,2011	70,8765	842,5236
pijpleiding		l se d			
Benutting restwarmte zonder warmtepomp en zonder	-11	kWh	0,0141	0,0166	0,2256
aansluiting op een onafhankelijk collectief warmte-					
transportnet, lengte-vermogenvermouding 2 0,10 en <					
CU nieuwe installatie, pre-combustion, nieuwe nijnlei-	-1	ton CO.	70 1572	70.8765	842 5226
ding		10111002	10,1352	10,0105	042,5250
Benutting restwarmte zonder warmtepomp en zonder	7	kWh	0.0181	0.0166	0.2254
aansluiting op een onafhankelijk collectief warmte-					
transportnet, lengte-vermogenverhouding ≥ 0,20 en <					
0,30					
Levensduurverlenging ketel op vaste of vloeibare bio-	8	kWh	0,0342	0,0323	0,2350
massa 0,5-5 MWth					
CCS, volledige CO ₂ -opslag bij bestaande installaties,	12	t CO ₂	71,4435	60,5285	906,5120
gasvormig transport (variant 2A)					
Extra CCU bestaande installatie, vloeibaar	17	ton CO ₂	84,8423	70,8765	831,8150
Onshore compressie met bestaande compressor	20	KWN	0,0945	0,0827	0,5760
ccs, nieuwe pre-combustion CO ₂ -atvang, nieuwe in-	21	t CO ₂	79,7373	60,5285	912,6140
C(1) bestaande installatie, pre-combustion, bestaande		top (O	88 1004	70.8755	876 6350
ninleiding	21	torreo ₂	88,1004	10,0105	030,0250
Benutting restwarmte zonder warmtenomn en zonder	24	kWh	0.0221	0.0166	0.2252
aansluiting op een onafhankeliik collectief warmte-	-4		0,0221	0,0100	0,2252
transportnet, lengte-vermogenverhouding ≥ 0,30 en <					
0,40					
Productie van waterstof uit huishoudelijk afval	26	kWh	0,0373	0,0340	0,1246
Ketel op B-hout	32	kWh	0,0289	0,0214	0,2322
PVT met warmtepomp	33	kWh	0,0441	0,0376	0,1974
Diepe geothermie (uitbreiding)	33	kWhth	0,0310	0,0166	0,4402
Elektrificatie nieuw offshore productieplatform	33	kWh	0,1019	0,0827	0,5760
CCS, gedeeltelijke CO2-opslag bij bestaande installaties,	37	t CO ₂	94,3260	60,5285	901,7020
vloeibaar transport met bestaande vervloeiingsinstal-					
Gui hostando installatio ano combustion nicense		ten (0)			9=6.6===
cco bestaande installatie, pre-combustion, nieuwe	37	toncoz	102,0525	10,0705	830,0250
Benutting restwarmte zonder warmtenomn en zonder	42	kWh	0.0261	0.0166	0.2240
aansluiting op een onafhankeliik collectief warmte-	4-		0,0201	0,0100	0,2249
transportnet, lengte-vermogenverhouding ≥ 0,40					
CCS, nieuwe pre-combustion CO2-afvang, bestaande	42	t CO ₂	98,5264	60,5285	906,5120
installatie, gasvormig transport (variant 3A)					
Fotovoltaïsche zonnepanelen, ≥15 kWp en <1 MWp, ge-	46	kWh	0,0705	0,0655	0,1077
bouwgebonden					
CCS, volledige CO ₂ -opslag bij bestaande installaties,	46	t CO2	101,7694	60,5285	901,7020
vloeibaar transport (variant 2B)			-		
CCU nieuwe installatie, pre-combustion, vioeibaar	48	ton CO ₂	111,1811	70,8765	837,7136
ccs, gedeettelijke CO2-opslag bij bestaande installa- ties gesvormig transport (verient - A)	53	t CO2	108,2214	60,5285	906,5120
CCS pieuwe pre-combustion CO -shipping pieuwe in		+00	110 (620	60 F2 ⁹ F	007.8040
stallatie, vloeibaar transport (variant 7B)	55	1002	110,4029	00,5285	907,8040
Diepe geothermie (basislast): ≥ 20 MW.	57	kWhe	0.0417	0.0166	0.4305
CCU nieuwe installatie, post-combustion, bestaande	57	ton CO.	114,5053	70.8765	771,6500
pijpleiding	24			1-1-1-2	11.1-2
Bestaande slibgisting, hernieuwbaar gas	58	kWh	0,0320	0,0214	0,1830

- SDE++ 2022, cheaper end of the ranking table
- Source: PBL Eindadvies basisbedragen 2022

Tabel 17.21 CO₂-afvang en -opslag, rangschikkingsparameters

Categorie	Productie- type [eenheid]	Subsidie- intensiteit [€/tCO₂]	Basisbedrag [€/eenheid]	Langeter- mijnprijs [€/eenheid]	Emissiefac- tor [kg CO ₂ /
		A=(B-C)/D	В	С	eenheid] D
CCS, gedeeltelijke CO2-opslag bij bestaande installaties, gasvormig transport (variant 1A)	t CO ₂	53	108,2214	60,5285	906,5120
CCS, gedeeltelijke CO2-opslag bij bestaande installaties, vloeibaar transport (variant 1B)	t CO ₂	85	136,9981	60,5285	901,7020
CCS, gedeeltelijke CO ₂ -opslag bij bestaande installaties, vloeibaar	t CO ₂	37	94,3260	60,5285	901,7020
CCS, volledige CO ₂ -opslag bij bestaande installaties, gasvormig	t CO ₂	12	71,4435	60,5285	906,5120
CCS, volledige CO ₂ -opslag bij bestaande installaties, vloeibaar transport (variant 2B)	t CO ₂	46	101,7694	60,5285	901,7020
CCS, nieuwe pre-combustion CO₂-afvang, bestaande installatie, gasvormig transport (variant 3A)	t CO ₂	42	98,5264	60,5285	906,5120
CCS, nieuwe pre-combustion CO₂-afvang, bestaande installatie, vloeibaar transport (variant 3B)	t CO2	72	125,6159	60,5285	901,7020
CCS, nieuwe pre-combustion CO₂-afvang bij waterstofproductie uit industriële restgassen, bestaande installatie, gasvormig transport (variant 4A)	t CO ₂	79	131,8951	60,5285	899,6140
CCS, nieuwe pre-combustion CO₂-afvang bij waterstofproductie uit industriële restgassen, bestaande installatie, vloeibaar transport (variant 4B)	t CO2	112	161,0091	60,5285	894,8040
CCS, nieuwe post-combustion CO ₂ -afvang, bestaande industriële installatie, gasvormig transport (variant 5A)	t CO₂	86	131,4751	60,5285	825,8300
CCS, nieuwe post-combustion CO ₂ -afvang, bestaande industriële installatie, vloeibaar transport (variant 5B)	t CO ₂	118	157,7749	60,5285	821,0200
CCS, nieuwe post-combustion CO ₂ -afvang, bestaande AVI, gasvor- mig transport (variant 6A)	t CO ₂	196	145,7642	0,0000	744,9220
CCS, nieuwe post-combustion CO ₂ -afvang, bestaande AVI, vloei- baar transport (variant 6B)	t CO ₂	238	176,2205	0,0000	740,1120
CCS, nieuwe pre-combustion CO₂-afvang, nieuwe installatie, gas- vormig transport (variant 7A)	t CO₂	21	79,7373	60,5285	912,6140
CCS, nieuwe pre-combustion CO ₂ -afvang, nieuwe installatie, vloei- baar transport (variant 7B)	t CO2	55	110,4629	60,5285	907,8040
CCS, nieuwe post-combustion CO ₂ -afvang, nieuwe installatie, gas- vormig transport (variant 8A)	t CO _z	65	115,3766	60,5285	841,6500
CCS, nieuwe post-combustion CO2-afvang, nieuwe installatie, vloeibaar transport (variant 8B)	t CO ₂	95	140,0336	60,5285	836,8400

- > SDE++ 2022, ranking
- Source: PBL Eindadvies basisbedragen 2022

Tabel 17.22 CO₂-afvang en -opslag, subsidieparameters

Categorie	Bodemprijs of basis- prijs [€/tCO₂]	Voorlopig correctie- bedrag [€/tCO ₂]	Voorlopig GvO- waarde [€/tCO₂]	Voorlopig ETS- waarde [€/tCO₂]	Vollasturen [uur/jaar]
CCS, gedeeltelijke CO₂-opslag bij bestaande installaties,	40,3523	41,3852	0,0000	0,0000	4000
gasvormig transport (variant 1A)					
CCS, gedeeltelijke CO2-opslag bij bestaande installaties,	40,3523	41,3852	0,0000	0,0000	4000
vloeibaar transport (variant 1B)					
CCS, gedeeltelijke CO2-opslag bij bestaande installaties,	40,3523	41,3852	0,0000	0,0000	4000
vloeibaar transport met bestaande vervloeiingsinstallatie					
(variant 1C)					
CCS, volledige CO₂-opslag bij bestaande installaties, gas-	40,3523	41,3852	0,0000	0,0000	8000
vormig transport (variant 2A)					
CCS, volledige CO₂-opslag bij bestaande installaties,	40,3523	41,3852	0,0000	0,0000	8000
vloeibaar transport (variant 2B)					
CCS, nieuwe pre-combustion CO2-afvang, bestaande in-	40,3523	41,3852	0,0000	0,0000	8000
stallatie, gasvormig transport (variant 3A)					
CCS, nieuwe pre-combustion CO2-afvang, bestaande in-	40,3523	41,3852	0,0000	0,0000	8000
stallatie, vloeibaar transport (variant 3B)					
CCS, nieuwe pre-combustion CO₂-afvang bij waterstof-	40,3523	41,3852	0,0000	0,0000	8000
productie uit industriële restgassen, bestaande installa-					
tie, gasvormig transport (variant 4A)					
CCS, nieuwe pre-combustion CO₂-afvang bij waterstof-	40,3523	41,3852	0,0000	0,0000	8000
productie uit industriële restgassen, bestaande installa-					
tie, vloeibaar transport (variant 4B)					
CCS, nieuwe post-combustion CO₂-afvang, bestaande in-	40,3523	41,3852	0,0000	0,0000	8000
dustriële installatie, gasvormig transport (variant 5A)					
CCS, nieuwe post-combustion CO₂-afvang, bestaande in-	40,3523	41,3852	0,0000	0,0000	8000
dustriële installatie, vloeibaar transport (variant 5B)					
CCS, nieuwe post-combustion CO2-afvang, bestaande	0,0000	0,0000	0,0000	0,0000	8000
AVI, gasvormig transport (variant 6A)					
CCS, nieuwe post-combustion CO2-afvang, bestaande	0,0000	0,0000	0,0000	0,0000	8000
AVI, vloeibaar transport (variant 6B)					
CCS, nieuwe pre-combustion CO₂-afvang, nieuwe instal-	40,3523	41,3852	0,0000	0,0000	8000
latie, gasvormig transport (variant 7A)					
CCS, nieuwe pre-combustion CO₂-afvang, nieuwe instal-	40,3523	41,3852	0,0000	0,0000	8000
latie, vloeibaar transport (variant 7B)					
CCS, nieuwe post-combustion CO₂-afvang, nieuwe instal-	40,3523	41,3852	0,0000	0,0000	8000
latie, gasvormig transport (variant 8A)					
CCS, nieuwe post-combustion CO₂-afvang, nieuwe instal-	40,3523	41,3852	0,0000	0,0000	8000
latie, vloeibaar transport (variant 8B)					

- SDE++ 2022, subsidy parameters
- Source: PBL Eindadvies
 basisbedragen 2022

Correction price / base price

CO2-prijs

Dagprijs en correctiebedragen

2022 provisional correction amount: € 41,38 / ton CO2

Jaargemiddelde

Bron: PBL 2021

Average long term CO2 price 2022-2036: 60,52 / € ton CO2

Cost breakdown for 2 CCS categories

Tabel 14.5

Technisch-economische en subsidieparameters voor nieuwe post-combustion CO₂-afvang bij bestaande industriële installaties*

Parameter	Eenheid	Variant 5A	Variant 5B
Aantal draaiuren	[uur/jaar]	8000	8000
Piekcapaciteit CO₂- aansluiting	[t CO ₂ afvang/uur]	81,25	81,25
Afgevangen CO₂ voor opslag	[Mt CO₂ afvang/jaar]	0,65	0,65
Vermeden CO₂	[Mt CO ₂ vermeden/jaar]	0,53	0,53
Investeringskosten: afvang, zuivering en compressie	[miljoen €]	230	202
Investeringskosten: vervloeiing	[miljoen €]	-	96
Investeringskosten: aansluiting trans- portnetwerk	[miljoen €]	2,9	-
Vaste O&M-kosten	[miljoen € /jaar]	7,0	8,0
Energieverbruik elektriciteit	[kWh _e /t CO ₂ afvang]	175	212
Energieverbruik warmte	[kWh _{th} /t CO ₂ afvang]	670	670
Variabele O&M- en energiekosten	[€/t CO₂ afvang]	25,4	27,1
Verwerkingstoeslag	[€/t CO₂ afvang]	47,1	57,4
Basisbedrag	[€/t CO₂ afvang]	131,4751	157,7749
Looptijd subsidie	[jaar]	15	15

* Gebruikte varianten:

Variant 5A: Nieuw post-combustion CO₂-afvang, bestaande industriële installatie, gasvormig transport. Variant 5B: Nieuw post-combustion CO₂-afvang, bestaande industriële installatie, vloeibaar transport. Source: PBL Eindadvies basisbedragen 2022