Preem CCS 2019 - 2021

Forskning, demonstration och förutsättningar för CCS på Svenska västkusten

Karin Lundqvist

Preem Development engineer, New opportunities

2022-04-21

Unique collaboration made this project happen

- Preem and Chalmers University of Technology have previously studied CCS with good collaboration
- Equinor and Northern Lights provide valuable information about the value chain
- **Sintef's** extensive experience of CCS investigations is a very valuable contribution
- Aker Carbon Capture's technical solutions and Mobile Test Unit provide the practical knowledge and experience for the project to build on
- Gassnova and the Swedish Energy Agency financially supporting the project

3 year project 2019 - 2022

Budget 28 Mkr

Overview of activities in Preem CCS

Pilot scale testing of CO₂ capture at the Lysekil refinery

Pilot-scale testing of CO₂ capture from flue gases at refinery's hydrogen production unit (HPU)

Baseline emissions (corresponding to assumed future emissions with increase H₂ production in HPU):

1.855 Mt CO₂/a (refinery)

685 kt CO₂/a (HPU, CO₂ concentration 18-20vol%_CO₂,wet)

Aker Carbon Capture (ACC) mobile test unit (MTU) capture capacity: up to 3 ton CO₂/day

2 test campaigns

Campaign 1: MEA solvent (30wt.%) Campaign 2: ACC's proprietary solvent S26

Main results of pilot scale testing

Campaign 1 MEA solvent

- Approx. 500 hrs of operation, 90% capture rate
- 57 tonnes CO₂ captured
- Good performance of anti-mist design
- Clear indications of solvent degradation and loss

Campaign 2 S26 proprietary solvent

- Approx. 3000 hrs of operation @90% capture rate (campaign 2 included some runs at higher capture rate)
- 363 tonnes CO₂ captured
- Energy performance: SRD values 15–18% below those obtained during MEA campaign
- Solvent degradation and losses: one order of magnitude
 below measured values during MEA campaign

6

Heat integration study - Conclusions

Heat supply for solvent regeneration is a major cost contributor

Recovery of residual heat at site could supply <u>~40%</u> of heat required to mitigate ~80% of the CO₂ emitted today at the Lysekil refinery (MEA capture; 90% capture rate)

Almost all heat needed for HPU capture from residual heat

Main gains with maximal recovery of residual heat:

- <u>Maximizes CO₂ abatement</u> if implemented in combination with heat pumps and electric boilers
- <u>Minimizes the import of external energy</u> and use of additional fossil fuels.
- <u>Can save 29-36% of annual CO₂ capture cost compared to</u> relying on external energy alone

CCS Chain analysis

Case	CO ₂ source at the Preem refineries	Approx. capture (90% of yearly emissions of corresponding stacks) [Mt CO2/a]	Transport pressure [barg]
Case 1	Lysekil: HPU flue gas (SMR)	~0.616	15
Case 1A	Lysekil: HPU flue gas (SMR)	~0.616	7
Case 2	Lysekil: HPU+ combined stack2 (low sulphur)	~0.940	15
Case 3	Lysekil: HPU + FCC	~0.799	15
Case 4	Lysekil: HPU + FCC + combined stack 1 + 2	~1.581	15
Case 5	HPU flue gas in Lysekil and Gothenburg	~0.916	15

 $\begin{array}{l} \underline{\textbf{Objective}}: \textbf{Evaluate}\\ \textbf{technical feasibility and}\\ \textbf{cost of the CCS chain}\\ \textbf{including CO}_2 \ \textbf{capture and}\\ \textbf{transportation by ship to}\\ \textbf{storage facilities off the}\\ \textbf{Norwegian west coast} \end{array}$

CCS Chain analysis - Conclusions

- 0.6–1.6 Mt/a of CO₂ can be captured with calculated avoidance costs in the range 94–128 €/t CO₂-avoided (storage cost not included)
- Capturing larger volumes of CO₂ does not lead to lower specific avoidance costs
- Reducing the transport pressure to 7 barg leads to 44% lower costs for on-site storage, loading and shipping
- The high-volume capture scenario (1.6 Mt/a of CO₂) could potentially trigger implementation of Phase 2 of the Northern Lights project (requires a CO₂ supply of 1.5-5 Mt CO₂/a)

More important lessons from the project

- Proven robustness of the technology
- Regulatory barriers are removed but there is still work to do
- The entire value chain must be secured in the form of agreements, monitoring and regulations in place

Read the reports from the project

Project web page

https://www.preem.se/foretag/kund-hos-preem/ hallbart-foretagande/har-ska-koldioxiden-fangas-in/

Preem CCS Synthesis of main project findings.pdf Preem CCS Legal and Regulatory.pdf

Clients:

Gassnova, Energimyndigheten, Preem AB

Preem's way forward

From fossil to climate neutral in 2035

Is it really possible?

In 2010 Preem started renewable co-processing

Preem processed **340,000** m³ of renewable raw materials in 2021

Why study CCS?

"Refers to quantified emissions in 2018 and in prioritized emission categories as specified by the GHG protocol's "scope 3 standard"

- CCS complements the transition from fossil to renewable production
- CCS with an increasing amount of bio-CCS

And how can there be a full-scale CCS facility in place?

- We are looking at developing CCS for both refineries, Göteborg and Lysekil
- Implementation is depending on the time schedule of our transition projects and permit processes
- Fossil CCS is included in EU ETS, bio-CCS need other incentives.
- When the low-carbon hydrogen is used for renewables production, it brings value through the reduction quota regulation.
- In Lysekil we have our own harbor facilities
- In Göteborg we are part of the cluster project CinfraCap

Cinfracap

Captured carbon dioxide - from capture plant to quayside

The optimal solution for the future, for CSS logistics and infrastructure in Gothenburg

Phase I – 2020/21 project leader Preem Phase II – 2021/22 project leader Nordion Energi and Göteborg Energi

We find the solution together

CinfraCap is a unique collaborative project with companies that share the ambition to reduce climate-affecting emissions here and now.

The project is supported by Industriklivet, the Swedish Energy Agency's climate initiative.

Project web page https://www.goteborgshamn.se/hamnens-projekt/cinfracap/

Prestudy report phase I

https://www.goteborgshamn.se/globalassets/cinfracap-forstudie-23-april-2021.pdf

Design requirements CCS value chain

- 1. Capture of CO₂
- 2. Transport of CO_2
 - Pipeline liquid
 - Pipeline gas
 - Tanker liquid
 - Railway liquid
- 3. CinfraCap CO₂ terminal,
 - Intermediate storage and potential liquefaction
- 4. Loading to ships of liquid CO₂
- 5. Ship transport and Recieving facility
- 6. Geological storage

Incoming steams from the capture plants to the loading arm for export of CO_2 to ships at the quay.

Design requirements

The parties - facilities physical location

Kick-off "Phase II" 26/1. Phase II ongoing until 30/10 aiming at producing input for BED/FEED.

WP1. Project management, communication
WP2. Technical design and cost calculations
WP3. Synchronization non- technical milestones
WP4. Potential locations final storage
WP5. Business model
WP6. Inventory permitting
WP7. Project risk analysis

Tack för visat intresse

1.41

Overview of the project "Preem CCS"

21

CCS From something vague in the future - to a realistic plan

General description of the project

<u>Work packages</u>	<u>Responsible</u>
• WPO Project management	Preem
• WP1 Demonstration of CO_2 capture on site	Aker CC
• WP2 Process evaluation and integration of full-scale CCS	Chalmers
• WP3 CCS value chain analysis: CO_2 capture, liquefaction and transport	SINTEF
• WP4 Identification of legal and regulatory barriers	SINTEF
• WP5 Definition of a roadmap for CO_2 reduction at Preemraff Lysekil	Chalmers

What happens now?

- The "Preem CCS" has created trust to take the next steps e.g., a feasibility study for a full-scale facility
- Continued work with partners regarding the value chain in the form of agreements, regulations and permits
 - The economic conditions need to be developed and fully understood, and become clear for the entire value chain

